Bài 1.56 trang 36 SBT giải tích 12

2024-09-14 19:34:31

Khảo sát và vẽ đồ thị các hàm số:

LG a

\(y = 2 - 3x - {x^2}\)

Phương pháp giải:

- Tìm TXĐ.

- Xét sự biến thiên.

+ Tìm các giới hạn tại vô cực.

+ Tìm khoảng đồng biến, nghịch biến.

+ Tìm cực trị (nếu có).

+ Lập bảng biến thiên.

- Vẽ đồ thị hàm số.

Giải chi tiết:

* TXĐ: \(D = \mathbb{R}\).

* Sự biến thiên:

- Giới hạn:

\(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \left( {2 - 3x - {x^2}} \right) =  - \infty ;\) \(\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \left( {2 - 3x - {x^2}} \right) =  - \infty \)

- Chiều biến thiên: \(y' =  - 3 - 2x = 0 \Leftrightarrow x =  - \dfrac{3}{2}\)

Có \(y' > 0 \Leftrightarrow x <  - \dfrac{3}{2}\) và \(y' < 0 \Leftrightarrow x >  - \dfrac{3}{2}\) nên:

Hàm số đồng biến trên khoảng \(\left( { - \infty ; - \dfrac{3}{2}} \right)\) và nghịch biến trên khoảng \(\left( { - \dfrac{3}{2}; + \infty } \right)\).

- Cực trị: Hàm số đạt cực đại tại điểm \(x =  - \dfrac{3}{2}\) và \({y_{CD}} = \dfrac{{17}}{4}\).

- Bảng biến thiên:

* Đồ thị:

- Cắt trục \(Oy\) tại điểm \(\left( {0;2} \right)\) và cắt trục \(Ox\) tại hai điểm phân biệt.

- Là parabol nhận đường thẳng \(x =  - \dfrac{3}{2}\) là trục đối xứng.

- Vẽ đồ thị:


LG b

\(y = {x^3} - {x^2} + x\)

Phương pháp giải:

- Tìm TXĐ.

- Xét sự biến thiên.

+ Tìm các giới hạn tại vô cực.

+ Tìm khoảng đồng biến, nghịch biến.

+ Tìm cực trị (nếu có).

+ Lập bảng biến thiên.

- Vẽ đồ thị hàm số.

Giải chi tiết:

* TXĐ: \(D = \mathbb{R}\).

* Sự biến thiên:

- Giới hạn:

\(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \left( {{x^3} - {x^2} + x} \right) =  + \infty ;\) \(\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \left( {{x^3} - {x^2} + x} \right) =  - \infty \)

- Chiều biến thiên: \(y' = 3{x^2} - 2x + 1 > 0,\forall x \in \mathbb{R}\).

Do đó, hàm số đồng biến trên \(\mathbb{R}\).

- Cực trị: Hàm số không có cực trị.

- Bảng biến thiên:

* Đồ thị:

- Cắt trục \(Oy\) và \(Ox\) tại điểm \(\left( {0;0} \right)\).

- Có \(y'' = 6x - 2 = 0 \Leftrightarrow x = \dfrac{1}{3}\) \( \Rightarrow y = \dfrac{7}{{27}}\) nên điểm uốn \(U\left( {\dfrac{1}{3};\dfrac{7}{{27}}} \right)\).

- Đi qua các điểm \(\left( {1;1} \right)\), \(\left( { - 1; - 3} \right)\)

- Vẽ đồ thị:


LG câu c

\(y =  - {x^4} + 2{x^3} + 3\)

Phương pháp giải:

- Tìm TXĐ.

- Xét sự biến thiên.

+ Tìm các giới hạn tại vô cực.

+ Tìm khoảng đồng biến, nghịch biến.

+ Tìm cực trị (nếu có).

+ Lập bảng biến thiên.

- Vẽ đồ thị hàm số.

Giải chi tiết:

* TXĐ: \(D = \mathbb{R}\).

* Sự biến thiên:

- Giới hạn:

\(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \left( { - {x^4} + 2{x^3} + 3} \right) =  - \infty ;\) \(\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \left( { - {x^4} + 2{x^3} + 3} \right) =  - \infty ;\)

- Chiều biến thiên: \(y' =  - 4{x^3} + 6{x^2} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \dfrac{3}{2}\end{array} \right.\).

Có \(y' > 0 \Leftrightarrow x < \dfrac{3}{2}\) và \(y' < 0 \Leftrightarrow x > \dfrac{3}{2}\) nên:

Hàm số đồng biến trên khoảng \(\left( { - \infty ;\dfrac{3}{2}} \right)\) và nghịch biến trên khoảng \(\left( {\dfrac{3}{2}; + \infty } \right)\).

- Cực trị: Hàm số đạt cực đại tại điểm \(x = \dfrac{3}{2}\) và \({y_{CD}} = \dfrac{{75}}{{16}}\), không có cực tiểu.

- Bảng biến thiên:

* Đồ thị:

- Cắt trục \(Oy\) tại điểm \(\left( {0;3} \right)\), cắt \(Ox\) tại hai điểm phân biệt, trong đó có điểm \(\left( { - 1;0} \right)\).

- Đi qua điểm \(\left( {1;4} \right)\).

- Vẽ đồ thị:

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"