Bài 1.92 trang 42 SBT giải tích 12

2024-09-14 19:34:32

Đề bài

Xác định giá trị của tham số \(m\) để phương trình \(2{x^3} + 3m{x^2} - 5 = 0\) có nghiệm duy nhất.

A. \(m = \sqrt[3]{5}\)              B. \(m < \sqrt[3]{5}\)

C. \(m > \sqrt[3]{5}\)              D. \(m \in \mathbb{R}\)

Phương pháp giải - Xem chi tiết

Sử dụng phương pháp hàm số:

- Xét hàm , tính đạo hàm và tìm nghiệm của đạo hàm.

- Biến luận nghiệm theo các cực trị (nếu có) của hàm số.

Lời giải chi tiết

Xét hàm \(y = 2{x^3} + 3m{x^2} - 5\) trên \(\mathbb{R}\).

Hàm số xác định và liên tục trên \(\mathbb{R}\).

Ta có: \(y' = 6{x^2} + 6mx = 6x\left( {x + m} \right)\); \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - m\end{array} \right.\)

+) Nếu \(m = 0\) thì \(y' = 6{x^2} \ge 0,\forall x\) nên hàm số đồng biến trên \(\mathbb{R}\).

Do đó phương trình đã cho có nghiệm duy nhất.

+) Nếu \(m \ne 0\) thì phương trình \(y' = 0\) có hai nghiệm phân biệt

\( \Rightarrow \) Hàm số có hai điểm cực trị.

Đẻ phương trình có nghiệm duy nhất thì đồ thị hàm số \(y = 2{x^3} + 3m{x^2} - 5\) có một giao điểm duy nhất với trục hoành \( \Leftrightarrow {y_{CD}}.{y_{CT}} > 0\).

Ta có: \({x_1} = 0\) \( \Rightarrow {y_1} =2.0^3 +3m.0^2 -5=  - 5\)

\({x_2} =  - m\) \( \Rightarrow {y_2} = 2.(-m)^3+3m.(-m)^2-5\) \(=-2m^3+3m^3-5={m^3} - 5\).

\({y_1}.{y_2} =  - 5\left( {{m^3} - 5} \right) > 0\) \( \Leftrightarrow {m^3} - 5 < 0 \Leftrightarrow m < \sqrt[3]{5}\).

Vậy \(m < \sqrt[3]{5}\).

Chọn B.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"