Bài 1.91 trang 42 SBT giải tích 12

2024-09-14 19:34:32

Đề bài

Xác định giá trị của tham số \(m\) để hàm số \(y = {x^3} + m{x^2}-3\) có cực đại và cực tiểu.

A. \(m = 3\)                              B. \(m > 0\)

C. \(m \ne 0\)                              D. \(m < 0\)

Phương pháp giải - Xem chi tiết

- Tính \(y'\).

- Hàm số đã cho có cực đại và cực tiểu \( \Leftrightarrow \) phương trình \(y' = 0\) có hai nghiệm phân biệt.

Lời giải chi tiết

Hàm số \(y = {x^3} + m{x^2} - 3\) xác định và có đạo hàm trên \(\mathbb{R}\).

Ta có: \(y' = 3{x^2} + 2mx = x(3x + 2m)\); \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - \dfrac{{2m}}{3}\end{array} \right.\)

Để hàm số có cực đại, cực tiểu thì phương trình \(y' = 0\) phải có hai nghiệm phân biệt \( \Leftrightarrow  - \dfrac{{2m}}{3} \ne 0 \Leftrightarrow m \ne 0\).

Chọn C.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"