Bài 1.89 trang 42 SBT giải tích 12

2024-09-14 19:34:33

Đề bài

Tọa độ giao điểm của đồ thị các hàm số \(y = \dfrac{{{x^2} - 2x - 3}}{{x - 2}}\) và \(y = x + 1\) là:

A. \(\left( {2;2} \right)\)                  B. \(\left( {2; - 3} \right)\)

C. \(\left( { - 1;0} \right)\)               D. \(\left( {3;1} \right)\)

Phương pháp giải - Xem chi tiết

- Giải phương trình hoành độ giao điểm tìm nghiệm.

- Tìm tung độ và suy ra tọa độ giao điểm.

Lời giải chi tiết

Phương trình hoành độ giao điểm: \(\dfrac{{{x^2} - 2x - 3}}{{x - 2}} \Leftrightarrow x + 1\) (1)

ĐK: \(x - 2 \ne 0 \Leftrightarrow x \ne 2\)

\( (1)\Rightarrow {x^2} - 2x - 3 = \left( {x + 1} \right)\left( {x - 2} \right)\) \( \Leftrightarrow {x^2} - 2x - 3 = {x^2} - x - 2\) \( \Leftrightarrow  - x - 1 = 0 \Leftrightarrow x =  - 1\left( {TM} \right)\).

Với \(x =  - 1\) thì \(y = 0\).

Vậy tọa độ giao điểm là \(\left( { - 1;0} \right)\).

Cách khác:

Hàm số \(y = \dfrac{{{x^2} - 2x - 3}}{{x - 2}}\) không xác định tại x = 2 nên phải loại (A), (B).

Thay x = 3 vào hàm số trên, ta được y(3)=0.

Mặt khác, hàm số thứ hai có giá trị là 4 khi x = 3, do đó loại (D).

Vậy (C) là khẳng định đúng.

Chọn C.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"