Bài 1.83 trang 41 SBT giải tích 12

2024-09-14 19:34:35

Đề bài

Chứng minh rằng phương trình \(3{x^5} + 15x-8 = 0\) chỉ có một nghiệm thực.

Phương pháp giải - Xem chi tiết

- Xét tính đơn điệu của hàm số trên TXĐ.

- Chứng tỏ phương trình có nghiệm, từ đó suy ra điều phải chứng minh.

Lời giải chi tiết

Hàm số \(f(x) = 3{x^5} + 15x - 8\) là hàm số liên tục và có đạo hàm trên \(\mathbb{R}\).

Có \(y' = 15{x^4} + 5 > 0,\forall x \in \mathbb{R}\)  nên hàm số đã cho luôn luôn đồng biến.

Mà \(f(0) =  - 8 < 0,f(1) = 10 > 0\)\( \Rightarrow f\left( 0 \right).f\left( 1 \right) < 0\) nên tồn tại ít nhất một số \({x_0} \in (0;1)\) sao cho \(f\left( {{x_0}} \right) = 0\), tức là phương trình \(f\left( x \right) = 0\) có nghiệm.

Mà hàm số đồng biến trên R nên điểm này là duy nhất.

Vậy phương trình chỉ có một nghiệm duy nhất (đpcm).

Cách khác:

Hàm số \(f(x) = 3{x^5} + 15x - 8\) là hàm số liên tục và có đạo hàm trên \(\mathbb{R}\).

Có \(y' = 15{x^4} + 5 > 0,\forall x \in \mathbb{R}\)  nên hàm số đã cho luôn luôn đồng biến trên \(\mathbb{R}\).

Ta có:

\(\begin{array}{l}
\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \left( {3{x^5} + 15x - 8} \right)\\
= \mathop {\lim }\limits_{x \to - \infty } \left[ {{x^5}\left( {3 + \frac{{15}}{{{x^4}}} - \frac{8}{{{x^5}}}} \right)} \right] = - \infty \\
\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {3{x^5} + 15x - 8} \right)\\
= \mathop {\lim }\limits_{x \to + \infty } \left[ {{x^5}\left( {3 + \frac{{15}}{{{x^4}}} - \frac{8}{{{x^5}}}} \right)} \right] = + \infty
\end{array}\)

Bảng biến thiên:

Từ bbt ta thấy đường thẳng y=0 luôn cắt đồ thị hàm số y=f(x) tại duy nhất 1 điểm hay pt đã cho có nghiệm duy nhất.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"