Bài 1.76 trang 40 SBT giải tích 12

2024-09-14 19:34:41

Cho hàm số: \(y =  - ({m^2} + 5m){x^3} + 6m{x^2} + 6x - 5\)

LG a

Xác định \(m\) để hàm số đơn điệu trên \(\mathbb{R}\). Khi đó, hàm số đồng biến hay nghịch biến? Tại sao?

Phương pháp giải:

- Tính \(y'\).

- Hàm số đơn điệu trên \(\mathbb{R}\) \( \Leftrightarrow y'\) không đổi dấu trên \(\mathbb{R}\).

Lời giải chi tiết:

Ta có: \(y' =  - 3({m^2} + 5m){x^2} + 12mx + 6\)

Hàm số đơn điệu trên \(\mathbb{R}\) khi và chỉ khi \(y'\) không đổi dấu.

Ta xét các trường hợp:

+) \({m^2} + 5m = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\m =  - 5\end{array} \right.\)

- Với \(m = 0\) thì \(y' = 6 > 0\) nên hàm số luôn đồng biến (thỏa mãn)

- Với \(m =  - 5\) thì \(y' =  - 60x + 6\) đổi dấu khi \(x\) đi qua \(\dfrac{1}{{10}}\) nên hàm số không đơn điệu trên \(\mathbb{R}\) (loại).

+) Với \({m^2} + 5m \ne 0 \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m \ne  - 5\end{array} \right.\).

Khi đó, \(y'\) không đổi dấu nếu \(\Delta ' = 36{m^2} + 18({m^2} + 5m) \le 0\)

\(\begin{array}{l}
\Leftrightarrow 36{m^2} + 18{m^2} + 90m \le 0\\
\Leftrightarrow 54{m^2} + 90m \le 0
\end{array}\)

\( \Leftrightarrow 3{m^2} + 5m \le 0\)\( \Leftrightarrow  - \dfrac{5}{3} \le m \le 0\)

Kết hợp với \(m\ne 0\) ta được \( - \frac{5}{3} \le m < 0\)

Với \( - \frac{5}{3} \le m < 0\) thì \({m^2} + 5m < 0\) nên \( - 3({m^2} + 5m) > 0\)

Do đó \(y' > 0\) và hàm số đồng biến trên \(\mathbb{R}\).

Kết hợp với m = 0 ở trên ta được \( - \dfrac{5}{3} \le m \le 0\) thì hàm số đồng biến trên \(\mathbb{R}\).


LG b

Với giá trị nào của \(m\) thì hàm số đạt cực đại tại \(x = 1\)?

Phương pháp giải:

Hàm số đạt cực đại tại \(x = {x_0}\) thì \(\left\{ \begin{array}{l}f'\left( {{x_0}} \right) = 0\\f''\left( {{x_0}} \right) < 0\end{array} \right.\)

Lời giải chi tiết:

Nếu hàm số đạt cực đại tại \(x = 1\) thì \(y'\left( 1 \right) = 0\)\( \Leftrightarrow  - 3{m^2} - 3m + 6 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}m = 1\\m =  - 2\end{array} \right.\)

Mặt khác, \(y'' =  - 6({m^2} + 5m)x + 12m\)

+) Với \(m = 1\;\) thì \(y'' =  - 36x + 12\). Khi đó, \(y''\left( 1 \right) =  - 24 < 0\), hàm số đạt cực đại tại \(x = 1\).

+) Với \(m =  - 2\) thì \(y'' = 36x-24\). Khi đó, \(y''\left( 1 \right) = 12 > 0\), hàm số đạt cực tiểu tại \(x = 1\).

Vậy với \(m = 1\;\) thì hàm số đạt cực đại tại \(x = 1\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"