Bài 2.5 trang 100 SBT giải tích 12

2024-09-14 19:34:44

Đề bài

Tìm khẳng định đúng trong các khẳng định sau:

A. \(\sqrt {17} < \root 3 \of {28} \)

B. \(\root 4 \of {13} >\root 5 \of {23} \)

C. \({({1 \over 3})^{\sqrt 3 }} >{({1 \over 3})^{\sqrt 2 }}\)

D. \({4^{\sqrt 5 }} > {4^{\sqrt 7 }}\)

Phương pháp giải - Xem chi tiết

Sử dụng các tính chất so sánh lũy thừa:

+ Nếu \(a > 1\) thì \({a^\alpha } > {a^\beta } \Leftrightarrow \alpha  > \beta \).

+ Nếu \(0 < a < 1\) thì \({a^\alpha } > {a^\beta } \Leftrightarrow \alpha  < \beta \).

Lời giải chi tiết

Đáp án A. 

\(\begin{array}{l}
\sqrt {17} > \sqrt {16} = 4\\
\sqrt[3]{{28}} < \sqrt[3]{{64}} = 4\\
\Rightarrow \sqrt {17} > 4 > \sqrt[3]{{28}}
\end{array}\)

nên A sai.

Đáp án B. \(\root 4 \of {13}  = \root {20} \of {{{13}^5}}  = \root {20} \of {371293} ;\) \(\root 5 \of {23}  = \root {20} \of {{{23}^4}}  = \root {20} \of {279841} \)

Ta có \(371293 > 279841\) nên \(\root 4 \of {13}  > \root 5 \of {23} \).

Vậy B đúng.

Đáp án C.\(\sqrt 3  > \sqrt 2 \) và \({1 \over 3} < 1\) nên \({({1 \over 3})^{\sqrt 3 }} <  {({1 \over 3})^{\sqrt 2 }}\).

Vậy C sai.

Đáp án D. \(\sqrt 5  < \sqrt 7 \) và \(4 > 1\) nên \({4^{\sqrt 5 }}< {4^{\sqrt 7 }}\).

Vậy D sai.

Chọn B.

Chú ý:

Có thể nhận xét đáp án A như sau:

\(\sqrt {17}  = \root 6 \of {{{17}^3}}  = \root 6 \of {4913} ;\) \(\root 3 \of {28}  = \root 6 \of {{{28}^2}}  = \root 6 \of {784} \)

\( \Rightarrow \sqrt {17} \) >  \(\root 3 \of {28} \). Vậy A sai.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"