Bài 2.9 trang 104 SBT giải tích 12

2024-09-14 19:34:47

Đề bài

Vẽ đồ thị của các hàm số \(y = {x^2}\)  và \(y = {x^{\frac{1}{2}}}\) trên cùng một hệ trục tọa độ. Hãy so sánh giá trị của các hàm số đó khi \(x = 0,5;1;\dfrac{3}{2};2;3;4.\)

Phương pháp giải - Xem chi tiết

- Vẽ đồ thị các hàm số đã cho dựa vào kiến thức đã học về hàm số bậc hai và hàm số lũy thừa.

- So sánh giá trị của hai hàm số tại các điểm \(x = {x_i}\) bằng cách dựng đường thẳng \(x = {x_i}\) và nhận xét vị trí các điểm giao trên hình vẽ.

Lời giải chi tiết

Đặt \(f(x) = {x^2},x \in R\);\(g(x) = {x^{\frac{1}{2}}},x > 0\)

Vẽ đồ thị hai hàm số ta được:

Từ đồ thị của hai hàm số ta thấy:

+) \(f(0,5) < g(0,5)\);

+) \(f(1) = g(1) = 1\);

+) \(f\left( {\dfrac{3}{2}} \right) > g\left( {\dfrac{3}{2}} \right)\);

+) \(f(2) > g(2)\);

+) \(f(3) > g(3)\);

+) \(f(4) > g(4)\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"