Bài 2.6 trang 104 SBT giải tích 12

2024-09-14 19:34:49

Tìm tập xác định của các hàm số sau:

LG a

 \(y = {({x^2} - 4x + 3)^{ - 2}}\)

Phương pháp giải:

Sử dụng lý thuyết về tập xác định của hàm số lũy thừa.

+ Lũy thừa có số mũ nguyên dương thì cơ số tùy ý.

+ Lũy thừa có số mũ nguyên âm hoặc bằng \(0\) thì cơ số khác \(0\).

+ Lũy thừa có số mũ không nguyên thì cơ số phải dương.

Lời giải chi tiết:

\(y = {({x^2} - 4x + 3)^{ - 2}} \)  

Vì \(-2 \in Z\) nên hàm số xác định khi

\({x^2} - 4x + 3  \ne 0\) \(  \Leftrightarrow (x-1)(x-3) \ne 0 \) \( \Leftrightarrow x \ne 1;x \ne 3\).

Vậy tập xác định của hàm số đã cho là \(D = \mathbb{R}\backslash \left\{ {1;3} \right\}\).


LG b

\(y = {({x^3} - 8)^{{\pi  \over 3}}}\)

Phương pháp giải:

Sử dụng lý thuyết về tập xác định của hàm số lũy thừa.

+ Lũy thừa có số mũ nguyên dương thì cơ số tùy ý.

+ Lũy thừa có số mũ nguyên âm hoặc bằng \(0\) thì cơ số khác \(0\).

+ Lũy thừa có số mũ không nguyên thì cơ số phải dương.

Lời giải chi tiết:

Vì \({\pi  \over 3} \notin Z\) nên

Hàm số xác định khi \({x^3}-8 > 0\) \(\Leftrightarrow x > 2\).

Vậy tập xác định của hàm số là \( D= (2; + \infty )\).


LG c

\(y = {({x^3} - 3{x^2} + 2x)^{{1 \over 4}}}\)

Phương pháp giải:

Sử dụng lý thuyết về tập xác định của hàm số lũy thừa.

+ Lũy thừa có số mũ nguyên dương thì cơ số tùy ý.

+ Lũy thừa có số mũ nguyên âm hoặc bằng \(0\) thì cơ số khác \(0\).

+ Lũy thừa có số mũ không nguyên thì cơ số phải dương.

Lời giải chi tiết:

Vì \({1 \over 4}\notin Z\) nên

Hàm số xác định khi \({x^3} - 3{x^2} + 2x > 0\) \(\Leftrightarrow x(x – 1)(x – 2) > 0\)

\(\Leftrightarrow\) \(0 < x < 1\) hoặc \(x > 2\).

Vậy tập xác định là \((0;1) \cup (2; + \infty )\).


LG d

\(y = {({x^2} + x - 6)^{ - {1 \over 3}}}\)

Phương pháp giải:

Sử dụng lý thuyết về tập xác định của hàm số lũy thừa.

+ Lũy thừa có số mũ nguyên dương thì cơ số tùy ý.

+ Lũy thừa có số mũ nguyên âm hoặc bằng \(0\) thì cơ số khác \(0\).

+ Lũy thừa có số mũ không nguyên thì cơ số phải dương.

Lời giải chi tiết:

Vì \(- {1 \over 3} \notin Z\) nên

Hàm số xác định khi \({x^2} + x - 6 > 0\) \( \Leftrightarrow x < -3 \) hoặc \(x > 2\).

Vậy tập xác định là \(( - \infty ; - 3) \cup (2; + \infty).\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"