Bài 2.29 trang 117 SBT giải tích 12

2024-09-14 19:34:59

Đề bài

Sử dụng tính chất đồng biến, nghịch biến của hàm số mũ, hãy so sánh mỗi cặp số sau:

a) \(\displaystyle {\left( {1,7} \right)^3}\) và \(\displaystyle 1\)

b) \(\displaystyle {\left( {0,3} \right)^2}\) và \(1\)

c) \(\displaystyle {\left( {3,2} \right)^{1,5}}\) và \(\displaystyle {\left( {3,2} \right)^{1,6}}\)

d) \(\displaystyle {\left( {0,2} \right)^{ - 3}}\) và \(\displaystyle {\left( {0,2} \right)^{ - 2}}\)

e) \({\left( {\dfrac{1}{5}} \right)^{\sqrt 2 }}\) và \({\left( {\dfrac{1}{5}} \right)^{1,4}}\)

g) \({6^\pi }\) và \(\displaystyle {6^{3,14}}\)

Phương pháp giải - Xem chi tiết

Hàm số mũ \(y = {a^x}\left( {0 < a \ne 1} \right)\) đồng biến nếu \(a > 1\) và nghịch biến nếu \(0 < a < 1\).

Lời giải chi tiết

a) Hàm số \(y = {\left( {1,7} \right)^x}\) có \(1,7 > 1\) nên đồng biến trên \(\mathbb{R}\).

Mà \(3 > 0\) nên \({\left( {1,7} \right)^3} > {\left( {1,7} \right)^0} = 1\).

b) Hàm số \(y = {\left( {0,3} \right)^x}\) có \(0 < 0,3 < 1\) nên nghịch biến trên \(\mathbb{R}\).

Mà \(2 > 0\) nên \({\left( {0,3} \right)^2} < {\left( {0,3} \right)^0} = 1\)

c) Hàm số \(y = {\left( {3,2} \right)^x}\) có \(3,2 > 1\) nên đồng biến trên \(\mathbb{R}\).

Mà \(1,5 < 1,6\) nên \(\displaystyle {\left( {3,2} \right)^{1,5}} < \;{\left( {3,2} \right)^{1,6}}\).

d) Hàm số \(y = {\left( {0,2} \right)^x}\) có \(0 < 0,2 < 1\) nên nghịch biến trên \(\mathbb{R}\).

Mà \( - 3 <  - 2\) nên \(\displaystyle {\left( {0,2} \right)^{ - 3}} > {\left( {0,2} \right)^{ - 2}}\)

e) Hàm số \(y = {\left( {\dfrac{1}{5}} \right)^x}\) có \(0 < \dfrac{1}{5} < 1\) nên nghịch biến trên \(\mathbb{R}\).

Mà \(\sqrt 2  > 1,4\) nên \({\left( {\dfrac{1}{5}} \right)^{\sqrt 2 }} < {\left( {\dfrac{1}{5}} \right)^{1,4}}\)

g) Hàm số \(y = {6^x}\) có \(6 > 1\) nên đồng biến trên \(\mathbb{R}\).

Mà \(\pi  > 3,14\) nên \({6^\pi } > {6^{3,14}}\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"