Bài 2.58 trang 126 SBT giải tích 12

2024-09-14 19:34:59

Đề bài

Nghiệm của phương trình \(\displaystyle {\log _4}\left\{ {2{{\log }_3}\left[ {1 + {{\log }_2}\left( {1 + 3{{\log }_2}x} \right)} \right]} \right\} = \frac{1}{2}\) là

A. \(\displaystyle x = 1\)              B. \(\displaystyle x = 2\)

C. \(\displaystyle x = 3\)              D. \(\displaystyle x = 0\)

Phương pháp giải - Xem chi tiết

Sử dụng phương pháp giải phương trình logarit cơ bản \(\displaystyle {\log _a}f\left( x \right) = m \Leftrightarrow f\left( x \right) = {a^m}\).

Lời giải chi tiết

Ta có: \(\displaystyle {\log _4}\left\{ {2{{\log }_3}\left[ {1 + {{\log }_2}\left( {1 + 3{{\log }_2}x} \right)} \right]} \right\} = \frac{1}{2}\)

\(\displaystyle  \Leftrightarrow 2{\log _3}\left[ {1 + {{\log }_2}\left( {1 + 3{{\log }_2}x} \right)} \right] = {4^{\frac{1}{2}}} = 2\) \(\displaystyle  \Leftrightarrow {\log _3}\left[ {1 + {{\log }_2}\left( {1 + 3{{\log }_2}x} \right)} \right] = 1\)

\(\displaystyle  \Leftrightarrow 1 + {\log _2}\left( {1 + 3{{\log }_2}x} \right) = 3\) \(\displaystyle  \Leftrightarrow {\log _2}\left( {1 + 3{{\log }_2}x} \right) = 2\) \(\displaystyle  \Leftrightarrow 1 + 3{\log _2}x = 4 \Leftrightarrow {\log _2}x = 1\)

\(\displaystyle  \Leftrightarrow x = 2\).

Chọn B.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"