Bài 2.50 trang 125 SBT giải tích 12

2024-09-14 19:35:01

Đề bài

Tìm tập hợp nghiệm của phương trình \(\displaystyle {25^x} - {6.5^x} + 5 = 0\)

A. \(\displaystyle \left\{ {1;2} \right\}\)                 B. \(\displaystyle \left\{ {0;1} \right\}\)

C. \(\displaystyle \left\{ 0 \right\}\)                      D. \(\displaystyle \left\{ 1 \right\}\)

Phương pháp giải - Xem chi tiết

- Đặt \(\displaystyle t = {5^x}\) đưa phương trình về bậc hai ẩn \(\displaystyle t\).

- Giải phương trình và kết luận nghiệm.

Lời giải chi tiết

Ta có: \(\displaystyle {25^x} - {6.5^x} + 5 = 0\)\(\displaystyle  \Leftrightarrow {\left( {{5^2}} \right)^x} - {6.5^x} + 5 = 0\) \(\displaystyle  \Leftrightarrow {\left( {{5^x}} \right)^2} - {6.5^x} + 5 = 0\)

Đặt \(\displaystyle t = {5^x} > 0\) phương trình trên trở thành:

\(\displaystyle {t^2} - 6t + 5 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = 5\end{array} \right.\) \(\displaystyle  \Rightarrow \left[ \begin{array}{l}{5^x} = 1\\{5^x} = 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\).

Vậy tập nghiệm của phương trình là \(\displaystyle \left\{ {0;1} \right\}\).

Chọn B.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"