Bài 2.49 trang 125 SBT giải tích 12

2024-09-14 19:35:01

Giải các phương trình logarit :

a) \(\displaystyle {\log _2}({2^x} + 1).{\log _2}({2^{x + 1}} + 2) = 2\)

b) \(\displaystyle {x^{\log 9}} + {9^{\log x}} = 6\)

c) \(\displaystyle {x^{3{{\log }^3}x - \frac{2}{3}\log x}} = 100\sqrt[3]{{10}}\)

d) \(\displaystyle 1 + 2{\log _{x + 2}}5 = {\log _5}(x + 2)\)

LG a

\(\displaystyle {\log _2}({2^x} + 1).{\log _2}({2^{x + 1}} + 2) = 2\)

Phương pháp giải:

- Đặt ẩn phụ \(\displaystyle t = {\log _2}({2^x} + 1)\).

- Biến đổi phương trình về bậc hai ẩn \(\displaystyle t\).

- Giải phương trình và suy ra nghiệm.

Lời giải chi tiết:

\(PT\Leftrightarrow {\log _2}\left( {{2^x} + 1} \right) . {\log _2}\left( {{{2.2}^x} + 2} \right) = 2\)

\(\displaystyle \Leftrightarrow  {\log _2}({2^x} + 1).{\log _2}\left[ {2({2^x} + 1)} \right] = 2\)

\( \Leftrightarrow {\log _2}\left( {{2^x} + 1} \right).\left[ {{{\log }_2}2 + {{\log }_2}\left( {{2^x} + 1} \right)} \right] = 2\)

\(\displaystyle  \Leftrightarrow {\log _2}({2^x} + 1).\left[ {1 + {{\log }_2}({2^x} + 1)} \right] = 2\)

Đặt \(\displaystyle t = {\log _2}({2^x} + 1)\), ta có phương trình \(\displaystyle t\left( {1 + t} \right) = 2\; \Leftrightarrow {t^2} + t - 2 = 0\)\(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}t = 1\\t =  - 2\end{array} \right.\)

\(\displaystyle  \Rightarrow \left[ \begin{array}{l}{\log _2}({2^x} + 1) = 1\\{\log _2}({2^x} + 1) =  - 2\end{array} \right.\) \(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}{2^x} + 1 = 2\\{2^x} + 1 = \frac{1}{4}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{2^x} = 1\\{2^x} =  - \frac{3}{4}(l)\end{array} \right.\)\(\displaystyle  \Leftrightarrow x = 0\)


LG b

\(\displaystyle {x^{\log 9}} + {9^{\log x}} = 6\)

Phương pháp giải:

- Tìm ĐKXĐ.

- Thu gọn phương trình và đặt \(\displaystyle t = {x^{\log 9}}\).

- Giải phương trình ẩn \(\displaystyle t\) và kết luận nghiệm.

Lời giải chi tiết:

ĐK: \(\displaystyle x > 0\).

Ta có: \(\displaystyle \log ({x^{\log 9}}) = \log 9.\log x\) và \(\displaystyle \log ({9^{\log x}}) = \log x.\log 9\)

Nên \(\displaystyle \log ({x^{\log 9}}) = \log ({9^{\log x}})\) suy ra \(\displaystyle {x^{\log 9}} = {9^{\log x}}\)

Đặt \(\displaystyle t = {x^{\log 9}}\), ta được phương trình \(\displaystyle 2t = 6 \Leftrightarrow t = 3\) \(\displaystyle  \Leftrightarrow {x^{\log 9}} = 3\)

\(\displaystyle  \Leftrightarrow \log ({x^{\log 9}}) = \log 3\)\(\displaystyle  \Leftrightarrow \log 9.\log x = \log 3\)

\(\displaystyle  \Leftrightarrow \log x = \frac{{\log 3}}{{\log 9}} = \frac{{\log 3}}{{\log {3^2}}} = \frac{{\log 3}}{{2\log 3}}\)\(\displaystyle  \Leftrightarrow \log x = \frac{1}{2}\)

\(\displaystyle  \Leftrightarrow x = \sqrt {10} \)  (thỏa mãn điều kiện \(\displaystyle x > 0\))


LG c

\(\displaystyle {x^{3{{\log }^3}x - \frac{2}{3}\log x}} = 100\sqrt[3]{{10}}\)

Phương pháp giải:

Logarit cơ số \(\displaystyle 10\) cả hai vế, đặt ẩn phụ \(\displaystyle t = \log x\) và giải phương trình.

Lời giải chi tiết:

ĐK: \(\displaystyle x > 0\).

Lấy logarit thập phân hai vế của phương trình đã cho, ta được:

\(\begin{array}{l}
\log \left[ {{x^{3{{\log }^3}x - \frac{2}{3}\log x}}} \right] = \log \left( {100\sqrt[3]{{10}}} \right)\\
\Leftrightarrow \left( {3{{\log }^3}x - \frac{2}{3}\log x} \right)\log x = \log \left( {{{10}^2}{{.10}^{\frac{1}{3}}}} \right)\\
\Leftrightarrow \left( {3{{\log }^3}x - \frac{2}{3}\log x} \right)\log x = \log {10^{\frac{7}{3}}}
\end{array}\)

\(\displaystyle \Leftrightarrow (3{\log ^3}x - \frac{2}{3}\log x).\log x = \frac{7}{3}\)

\( \Leftrightarrow 3{\log ^4}x - \frac{2}{3}{\log ^2}x - \frac{7}{3} = 0\)

Đặt \(\displaystyle t = \log x\), ta được phương trình \(\displaystyle 3{t^4} - \frac{2}{3}{t^2} - \frac{7}{3} = 0\)

\(\displaystyle  \Leftrightarrow 9{t^4} - 2{t^2} - 7 = 0\)\(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}{t^2} = 1\\{t^2} =  - \frac{7}{9}(l)\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 1\\t =  - 1\end{array} \right.\) \(\displaystyle  \Rightarrow \left[ \begin{array}{l}\log x = 1\\\log x =  - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 10\\x = \frac{1}{{10}}\end{array} \right.\).


LG d

\(\displaystyle 1 + 2{\log _{x + 2}}5 = {\log _5}(x + 2)\)

Phương pháp giải:

Đặt ẩn phụ \(\displaystyle t = {\log _5}(x + 2)\), giải phương trình ẩn \(\displaystyle t\) và suy ra nghiệm.

Lời giải chi tiết:

ĐK: \(\left\{ \begin{array}{l}x + 2 > 0\\x + 2 \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > - 2\\x \ne - 1\end{array} \right.\)

Đặt \(\displaystyle t = {\log _5}(x + 2)\Leftrightarrow x + 2 = {5^t}\) ta có:

\(\begin{array}{l}
1 + 2{\log _{{5^t}}}5 = t\\
\Leftrightarrow 1 + \frac{2}{t}{\log _5}5 = t
\end{array}\)

\(\displaystyle \Leftrightarrow 1 + \frac{2}{t} = t\)\(\displaystyle  \Leftrightarrow {t^2} - t - 2 = 0,t \ne 0\)

\(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}t =  - 1\\t = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{\log _5}(x + 2) =  - 1\\{\log _5}(x + 2) = 2\end{array} \right.\)\(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}x + 2 = \frac{1}{5}\\x + 2 = 25\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{9}{5}\\x = 23\end{array}(TM) \right.\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"