Đề bài
Tìm tập hợp nghiệm của bất phương trình \(\displaystyle {\log _3}\frac{{2x}}{{x + 1}} > 1\).
A. \(\displaystyle \left( { - \infty ; - 3} \right)\)
B. \(\displaystyle \left( { - 1; + \infty } \right)\)
C. \(\displaystyle \left( { - \infty ; - 3} \right) \cup \left( { - 1; + \infty } \right)\)
D. \(\displaystyle \left( { - 3; - 1} \right)\)
Phương pháp giải - Xem chi tiết
- Tìm ĐKXĐ.
- Sử dụng phương pháp giải phương trình logarit cơ bản \(\displaystyle {\log _a}f\left( x \right) > m \Leftrightarrow f\left( x \right) > {a^m}\) với \(\displaystyle a > 1\).
Lời giải chi tiết
Điều kiện: \(\displaystyle \frac{{2x}}{{x + 1}} > 0 \Leftrightarrow \left[ \begin{array}{l}x > 0\\x < - 1\end{array} \right.\).
Ta có: \(\displaystyle {\log _3}\frac{{2x}}{{x + 1}} > 1\) \(\displaystyle \Leftrightarrow \frac{{2x}}{{x + 1}} > 3\) \(\displaystyle \Leftrightarrow \frac{{2x - 3x - 3}}{{x + 1}} > 0\) \(\displaystyle \Leftrightarrow \frac{{ - x - 3}}{{x + 1}} > 0\)\(\displaystyle \Leftrightarrow - 3 < x < - 1\).
Kết hợp điều kiện ta được \(\displaystyle - 3 < x < - 1\).
Chọn D.
[hoctot.me - Trợ lý học tập AI]