Bài 2.100 trang 137 SBT giải tích 12

2024-09-14 19:35:06

Đề bài

Tìm tập hợp nghiệm của phương trình sau \(\displaystyle  \lg \left( {152 + {x^3}} \right) = \lg {\left( {x + 2} \right)^3}\)

A. \(\displaystyle  \left\{ 4 \right\}\)                    B. \(\displaystyle  \left\{ { - 6} \right\}\)

C. \(\displaystyle  \left\{ {4; - 6} \right\}\)            D. \(\displaystyle  \left\{ {4;6} \right\}\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức \(\displaystyle  {\log _a}f\left( x \right) = {\log _a}g\left( x \right)\) \(\displaystyle   \Leftrightarrow f\left( x \right) = g\left( x \right)\)

Lời giải chi tiết

ĐK: \(\displaystyle  \left\{ \begin{array}{l}152 + {x^3} > 0\\{\left( {x + 2} \right)^3} > 0\end{array} \right.\)

Khi đó \(\displaystyle  \lg \left( {152 + {x^3}} \right) = \lg {\left( {x + 2} \right)^3}\)\(\displaystyle   \Leftrightarrow 152 + {x^3} = {\left( {x + 2} \right)^3}\) \(\displaystyle   \Leftrightarrow 152 + {x^3} = {x^3} + 6{x^2} + 12x + 8\)

\(\displaystyle   \Leftrightarrow 6{x^2} + 12x - 144 = 0\) \(\displaystyle   \Leftrightarrow {x^2} + 2x - 24 = 0\) \(\displaystyle   \Leftrightarrow \left[ \begin{array}{l}x =  - 6\left( {KTM} \right)\\x = 4\left( {TM} \right)\end{array} \right.\)

Vậy phương trình có nghiệm duy nhất \(\displaystyle  x = 4\).

Chọn A.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"