Bài 2.94 trang 136 SBT giải tích 12

2024-09-14 19:35:08

Đề bài

Tìm tập hợp nghiệm của phương trình \(\displaystyle  {3^x}{.2^{{x^2}}} = 1\)

A. \(\displaystyle  \left\{ {0;{{\log }_2}\left( {\frac{1}{3}} \right)} \right\}\)         B. \(\displaystyle  \left\{ 0 \right\}\)

C. \(\displaystyle  \left\{ { - {{\log }_2}3} \right\}\)                    D. \(\displaystyle  \left\{ {0;{{\log }_3}2} \right\}\)

Phương pháp giải - Xem chi tiết

Logarit hai vế cơ số \(\displaystyle  3\) và giải phương trình thu được.

Lời giải chi tiết

Logarit hai vế cơ số \(\displaystyle  3\) ta được:

 \(\displaystyle  {3^x}{.2^{{x^2}}} = 1\)\(\displaystyle   \Leftrightarrow {\log _3}\left( {{3^x}{{.2}^{{x^2}}}} \right) = {\log _3}1\) \(\displaystyle   \Leftrightarrow {\log _3}{3^x} + {\log _3}{2^{{x^2}}} = 0\) \(\displaystyle   \Leftrightarrow x + {x^2}{\log _3}2 = 0\)

\(\displaystyle   \Leftrightarrow x\left[ {1 + x{{\log }_3}2} \right] = 0\) \(\displaystyle   \Leftrightarrow \left[ \begin{array}{l}x = 0\\1 + x{\log _3}2 = 0\end{array} \right.\) \(\displaystyle   \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - \frac{1}{{{{\log }_3}2}}\end{array} \right.\) \(\displaystyle   \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - {\log _2}3\end{array} \right.\) \(\displaystyle   \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = {\log _2}\left( {\frac{1}{3}} \right)\end{array} \right.\)

Chọn A.

Chú ý:

Ngoài cách làm trên các em cũng có thể lấy logarit cơ số \(\displaystyle  2\) của hai vế.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"