Bài 2.93 trang 136 SBT giải tích 12

2024-09-14 19:35:08

Đề bài

Tìm tập hợp nghiệm của phương trình \(\displaystyle  {5.4^x} - {7.10^x} + {2.25^x} = 0\)

A. \(\displaystyle  \left\{ {1;\frac{1}{5}} \right\}\)              B. \(\displaystyle  \left\{ {1;\frac{5}{2}} \right\}\)

C. \(\displaystyle  \left\{ {0;1} \right\}\)                  D. \(\displaystyle  \left\{ {0; - 1} \right\}\)

Phương pháp giải - Xem chi tiết

Chia cả hai vế của phương trình cho \(\displaystyle  {25^x}\) và biến đổi về phương trình bậc hai với ẩn là một hàm số mũ.

Lời giải chi tiết

Chia cả hai vế của phương trình cho \(\displaystyle  {25^x}\) ta được:

\(5.\frac{{{4^x}}}{{{{25}^x}}} - 7.\frac{{{{10}^x}}}{{{{25}^x}}} + 2.\frac{{{{25}^x}}}{{{{25}^x}}} = 0\)

\(\displaystyle   \Leftrightarrow 5.{\left( {\frac{4}{{25}}} \right)^x} - 7.{\left( {\frac{2}{5}} \right)^x} + 2 = 0\) \(\displaystyle   \Leftrightarrow 5.{\left( {\frac{2}{5}} \right)^{2x}} - 7.{\left( {\frac{2}{5}} \right)^x} + 2 = 0\)

Đặt \(\displaystyle  t = {\left( {\frac{2}{5}} \right)^x} > 0\) ta được \(\displaystyle  5{t^2} - 7t + 2 = 0\) \(\displaystyle   \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = \frac{2}{5}\end{array} \right.\left( {TM} \right)\)

Suy ra \(\displaystyle  \left[ \begin{array}{l}{\left( {\frac{2}{5}} \right)^x} = 1\\{\left( {\frac{2}{5}} \right)^x} = \frac{2}{5}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\).

Chọn C.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"