Bài 2.89 trang 136 SBT giải tích 12

2024-09-14 19:35:09

Đề bài

Tìm nghiệm của bất phương trình \(\displaystyle  \frac{{{2^x}}}{2} < {2^{\sqrt {7 - x} }}\)

A. \(\displaystyle  x < 3\)                        B. \(\displaystyle  x \ge 1\)

C. \(\displaystyle  1 \le x < 3\)                D. \(\displaystyle  x < 1\)

Phương pháp giải - Xem chi tiết

Biến đổi về bất phương trình mũ có cùng cơ số.

Lời giải chi tiết

ĐK: \(\displaystyle  7 - x \ge 0 \Leftrightarrow x \le 7\).

Khi đó \(\displaystyle  \frac{{{2^x}}}{2} < {2^{\sqrt {7 - x} }}\)\(\displaystyle   \Leftrightarrow {2^{x - 1}} < {2^{\sqrt {7 - x} }}\) \(\displaystyle   \Leftrightarrow x - 1 < \sqrt {7 - x} \) \(\displaystyle   \Leftrightarrow \left[ \begin{array}{l}x - 1 < 0\\\left\{ \begin{array}{l}x - 1 \ge 0\\{\left( {x - 1} \right)^2} < 7 - x\end{array} \right.\end{array} \right.\)

\(\displaystyle   \Leftrightarrow \left[ \begin{array}{l}x < 1\\\left\{ \begin{array}{l}x \ge 1\\{x^2} - x - 6 < 0\end{array} \right.\end{array} \right.\) \(\displaystyle   \Leftrightarrow \left[ \begin{array}{l}x < 1\\\left\{ \begin{array}{l}x \ge 1\\ - 2 < x < 3\end{array} \right.\end{array} \right.\) \(\displaystyle   \Leftrightarrow \left[ \begin{array}{l}x < 1\\1 \le x < 3\end{array} \right. \Leftrightarrow x < 3\).

Chọn A.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"