Bài 2.87 trang 135 SBT giải tích 12

2024-09-14 19:35:09

Đề bài

Tìm tập hợp nghiệm của phương trình \(\displaystyle  \frac{{{{\log }_2}x}}{{{{\log }_4}2x}} = \frac{{{{\log }_8}4x}}{{{{\log }_{16}}8x}}\).

A. \(\displaystyle  \left\{ 2 \right\}\)                      B. \(\displaystyle  \left\{ {\frac{1}{4}} \right\}\)

C. \(\displaystyle  \left\{ {2;\frac{1}{4}} \right\}\)             D. \(\displaystyle  \left\{ {2;\frac{1}{{16}}} \right\}\)

Phương pháp giải - Xem chi tiết

Biến đổi phương trình về cùng cơ số và giải phương trình.

Lời giải chi tiết

ĐK: \(\displaystyle  \left\{ \begin{array}{l}x > 0\\{\log _4}2x \ne 0\\{\log _{16}}8x \ne 0\end{array} \right.\).

Khi đó, phương trình \(\displaystyle  \frac{{{{\log }_2}x}}{{{{\log }_4}2x}} = \frac{{{{\log }_8}4x}}{{{{\log }_{16}}8x}}\)\(\displaystyle   \Leftrightarrow {\log _2}x.{\log _{16}}8x = {\log _4}2x.{\log _8}4x\)

\(\displaystyle   \Leftrightarrow {\log _2}x.\frac{1}{4}{\log _2}8x\) \(\displaystyle   = \frac{1}{2}{\log _2}2x.\frac{1}{3}{\log _2}4x\)

\(\begin{array}{l}
\Leftrightarrow \frac{{{{\log }_2}x.{{\log }_2}8x}}{4} = \frac{{{{\log }_2}2x.{{\log }_2}4x}}{6}\\
\Leftrightarrow 6{\log _2}x.{\log _2}8x = 4{\log _2}2x.{\log _2}4x\\
\Leftrightarrow 3{\log _2}x.{\log _2}8x = 2{\log _2}2x.{\log _2}4x\\
\Leftrightarrow 3{\log _2}x.\left( {{{\log }_2}8 + {{\log }_2}x} \right)\\
= 2\left( {{{\log }_2}2 + {{\log }_2}x} \right)\left( {{{\log }_2}4 + {{\log }_2}x} \right)
\end{array}\)

\(\displaystyle   \Leftrightarrow 3{\log _2}x.\left( {3 + {{\log }_2}x} \right)\)\(\displaystyle   = 2\left( {1 + {{\log }_2}x} \right)\left( {2 + {{\log }_2}x} \right)\)

\(\displaystyle   \Leftrightarrow 9{\log _2}x + 3\log _2^2x\) \(\displaystyle   = 2\left( {2 + 3{{\log }_2}x + \log _2^2x} \right)\)

\(\displaystyle   \Leftrightarrow \log _2^2x + 3{\log _2}x - 4 = 0\) \(\displaystyle   \Leftrightarrow \left[ \begin{array}{l}{\log _2}x = 1\\{\log _2}x =  - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\x = \frac{1}{{16}}\end{array} \right.\left( {TM} \right)\)

Vậy tập nghiệm \(\displaystyle  \left\{ {2;\frac{1}{{16}}} \right\}\).

Chọn D.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"