Bài 2.80 trang 135 SBT giải tích 12

2024-09-14 19:35:11

Đề bài

Tập nghiệm của bất phương trình \(\displaystyle  {3^x} \ge 5 - 2x\) là:

A. \(\displaystyle  \left[ {1; + \infty } \right)\)            B. \(\displaystyle  \left( { - \infty ;1} \right]\)

C. \(\displaystyle  \left( {1; + \infty } \right)\)           D. \(\displaystyle  \emptyset \)

Phương pháp giải - Xem chi tiết

Sử dụng phương pháp xét tính đơn điệu của hàm số để giải bất phương trình.

Lời giải chi tiết

Ta có: \(\displaystyle  {3^x} \ge 5 - 2x\)\(\displaystyle   \Leftrightarrow {3^x} + 2x \ge 5\).

Xét hàm \(\displaystyle  f\left( x \right) = {3^x} + 2x\) có \(\displaystyle  f'\left( x \right) = {3^x}\ln 3 + 2 > 0\) với mọi \(\displaystyle  x \in \mathbb{R}\).

Do đó hàm số đồng biến trên \(\displaystyle  \mathbb{R}\).

Mà \(\displaystyle  f\left( 1 \right) = 5\) nên \(\displaystyle  {3^x} + 2x \ge 5\)\(\displaystyle   \Leftrightarrow f\left( x \right) \ge f\left( 1 \right) \Leftrightarrow x \ge 1\).

Vậy tập nghiệm là \(\displaystyle  \left[ {1; + \infty } \right)\).

Chọn A.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"