Bài 2.72 trang 134 SBT giải tích 12

2024-09-14 19:35:12

Giải các bất phương trình sau:

LG a

\(\displaystyle (2x - 7)\ln (x + 1) > 0\)

Phương pháp giải:

Sử dụng phương pháp giải bất phương trình tích \(\displaystyle AB > 0 \Leftrightarrow \left[ \begin{array}{l}A > 0,B > 0\\A < 0,B < 0\end{array} \right.\) và \(\displaystyle AB < 0 \Leftrightarrow \left[ \begin{array}{l}A > 0,B < 0\\A < 0,B > 0\end{array} \right.\)

Lời giải chi tiết:

\(\displaystyle (2x - 7)\ln (x + 1) > 0\). ĐK: \(\displaystyle x + 1 > 0 \Leftrightarrow x >  - 1\).

+) TH1: \(\displaystyle \left\{ \begin{array}{l}2x - 7 > 0\\\ln \left( {x + 1} \right) > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > \frac{7}{2}\\x + 1 > 1\end{array} \right.\) \(\displaystyle  \Leftrightarrow \left\{ \begin{array}{l}x > \frac{7}{2}\\x > 0\end{array} \right. \Leftrightarrow x > \frac{7}{2}\)

+) TH2: \(\displaystyle \left\{ \begin{array}{l}2x - 7 < 0\\\ln \left( {x + 1} \right) < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x < \frac{7}{2}\\x + 1 < 1\end{array} \right.\) \(\displaystyle  \Leftrightarrow \left\{ \begin{array}{l}x < \frac{7}{2}\\x < 0\end{array} \right. \Leftrightarrow x < 0\)

Kết hợp điều kiên ta được \(\displaystyle  - 1 < x < 0\).

Vậy tập nghiệm của bất phương trình là \(\displaystyle S = \left( { - 1;0} \right) \cup \left( {\frac{7}{2}; + \infty } \right)\).


LG b

\(\displaystyle (x - 5)(\log x + 1) < 0\)

Phương pháp giải:

Sử dụng phương pháp giải bất phương trình tích \(\displaystyle AB > 0 \Leftrightarrow \left[ \begin{array}{l}A > 0,B > 0\\A < 0,B < 0\end{array} \right.\) và \(\displaystyle AB < 0 \Leftrightarrow \left[ \begin{array}{l}A > 0,B < 0\\A < 0,B > 0\end{array} \right.\)

Lời giải chi tiết:

\(\displaystyle (x - 5)(\log x + 1) < 0\). ĐK: \(\displaystyle x > 0\).

+) TH1: \(\displaystyle \left\{ \begin{array}{l}x - 5 > 0\\\log x + 1 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 5\\\log x <  - 1\end{array} \right.\) \(\displaystyle  \Leftrightarrow \left\{ \begin{array}{l}x > 5\\x < \frac{1}{{10}}\end{array} \right.\left( {VN} \right)\)

+) TH2: \(\displaystyle \left\{ \begin{array}{l}x - 5 < 0\\\log x + 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x < 5\\\log x >  - 1\end{array} \right.\) \(\displaystyle  \Leftrightarrow \left\{ \begin{array}{l}x < 5\\x > \frac{1}{{10}}\end{array} \right. \Leftrightarrow \frac{1}{{10}} < x < 5\)

Kết hợp điều kiện ta được \(\displaystyle \frac{1}{{10}} < x < 5\).

Vậy tập nghiệm là \(\displaystyle \left( {\frac{1}{{10}};5} \right)\).


LG c

\(\displaystyle 2\log _2^3x + 5\log _2^2x + {\log _2}x - 2 \ge 0\)

Phương pháp giải:

Giải bất phương trình bằng các đặt ẩn phụ.

Lời giải chi tiết:

Đặt \(\displaystyle t = {\log _2}x\), ta có bất phương trình \(\displaystyle 2{t^3} + 5{t^2} + t - 2 \ge 0\)

\(\displaystyle  \Leftrightarrow (t + 2)(2{t^2} + t - 1) \ge 0\) \(\displaystyle  \Leftrightarrow \left[ \begin{array}{l} - 2 \le t \le  - 1\\t \ge \frac{1}{2}\end{array} \right.\)

Suy ra \(\displaystyle \left[ \begin{array}{l} - 2 \le {\log _2}x \le  - 1\\{\log _2}x \ge \frac{1}{2}\end{array} \right.\) \(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}{2^{ - 2}} \le x \le {2^{ - 1}}\\x \ge {2^{\frac{1}{2}}}\end{array} \right.\) \(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}\frac{1}{4} \le x \le \frac{1}{2}\\x \ge \sqrt 2 \end{array} \right.\)

Vậy tập nghiệm của bất phương trình đã cho là: \(\displaystyle \left[ {\frac{1}{4};\frac{1}{2}} \right] \cup \left[ {\sqrt 2 ; + \infty } \right)\).


LG d

\(\displaystyle \ln (3{e^x} - 2) \le 2x\)

Phương pháp giải:

Giải bất phương trình bằng các đặt ẩn phụ.

Lời giải chi tiết:

ĐK: \(\displaystyle 3{e^x} - 2 > 0 \Leftrightarrow {e^x} > \frac{2}{3}\) \(\displaystyle  \Leftrightarrow x > \ln \frac{2}{3}\).

Khi đó bpt\(\displaystyle  \Leftrightarrow 3{e^x} - 2 \le {e^{2x}}\).

Đặt \(t=e^x > 0\) ta được \(\displaystyle 3t - 2 \le {t^2} \Leftrightarrow {t^2} - 3t + 2 \ge 0\) \(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}t \ge 2\\t \le 1\end{array} \right.\).

\(\displaystyle  \Rightarrow \left[ \begin{array}{l}{e^x} \ge 2\\{e^x} \le 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge \ln 2\\x \le 0\end{array} \right.\).

Kết hợp điều kiện ta được \(\displaystyle \left[ \begin{array}{l}x \ge \ln 2\\\ln \frac{2}{3} < x \le 0\end{array} \right.\)

Vậy tập nghiệm là \(\displaystyle \left( {\ln \frac{2}{3};0} \right] \cup \left[ {\ln 2; + \infty } \right)\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"