Bài 2.71 trang 134 SBT giải tích 12

2024-09-14 19:35:13

Giải các bất phương trình logarit sau:

LG a

\(\displaystyle \frac{{\ln x + 2}}{{\ln x - 1}} < 0\)

Phương pháp giải:

Giải bất phương trình bằng phương pháp đặt ẩn phụ.

Lời giải chi tiết:

ĐK: 

\(\left\{ \begin{array}{l}
x > 0\\
\ln x \ne 1
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x > 0\\
x \ne e
\end{array} \right.\)

Đặt \(\displaystyle t = \ln x\left( {t \ne 1} \right)\) ta được: \(\displaystyle \frac{{t + 2}}{{t - 1}} < 0 \Leftrightarrow  - 2 < t < 1\).

Suy ra \(\displaystyle  - 2 < \ln x < 1 \Leftrightarrow {e^{ - 2}} < x < e\) \( \Leftrightarrow \frac{1}{{{e^2}}} < x < e\)

Kết hợp điều kiện ta được \(\displaystyle \frac{1}{{{e^2}}} < x < e\).


LG b

\(\displaystyle \log _{0,2}^2x - {\log _{0,2}}x - 6 \le 0\)

Phương pháp giải:

Giải bất phương trình bằng phương pháp đặt ẩn phụ.

Lời giải chi tiết:

Đặt \(\displaystyle t = {\log _{0,2}}x\) ta được: \(\displaystyle {t^2} - t - 6 \le 0\) \(\displaystyle  \Leftrightarrow  - 2 \le t \le 3\)

Suy ra \(\displaystyle  - 2 \le {\log _{0,2}}x \le 3\) \(\displaystyle  \Leftrightarrow 0,{2^3} \le x \le 0,{2^{ - 2}}\)

\(\begin{array}{l}
\Leftrightarrow {\left( {\frac{1}{5}} \right)^3} \le x \le \frac{1}{{0,{2^2}}}\\
\Leftrightarrow {\left( {\frac{1}{5}} \right)^3} \le x \le \frac{1}{{{{\left( {1/5} \right)}^2}}}
\end{array}\)

\(\displaystyle  \Leftrightarrow \frac{1}{{125}} \le x \le 25\).

Vậy bất phương trình có nghiệm \(\displaystyle \frac{1}{{125}} \le x \le 25\).


LG c

\(\displaystyle \log ({x^2} - x - 2) < 2\log (3 - x)\)

Phương pháp giải:

Giải bất phương trình bằng phương pháp biến đổi về bất phương trình logarit có cùng cơ số.

Lời giải chi tiết:

ĐK: \(\displaystyle \left\{ \begin{array}{l}{x^2} - x - 2 > 0\\3 - x > 0\end{array} \right.\) \(\displaystyle  \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x > 2\\x <  - 1\end{array} \right.\\x < 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2 < x < 3\\x <  - 1\end{array} \right.\)

Khi đó

\(\displaystyle \log ({x^2} - x - 2) < 2\log (3 - x)\)

\( \Leftrightarrow \log \left( {{x^2} - x - 2} \right) < \log {\left( {3 - x} \right)^2}\)

\(\displaystyle  \Leftrightarrow {x^2} - x - 2 < {\left( {3 - x} \right)^2}\)

\( \Leftrightarrow {x^2} - x - 2 < 9 - 6x + {x^2}\)

\(\displaystyle  \Leftrightarrow 5x - 11 < 0 \Leftrightarrow x < \frac{{11}}{5}\)

Kết hợp điều kiện ta được \(\displaystyle \left[ \begin{array}{l}2 < x < \frac{{11}}{5}\\x <  - 1\end{array} \right.\)

Vậy tập nghiệm là  \(\displaystyle \left( { - \infty ; - 1} \right) \cup \left( {2;\frac{{11}}{5}} \right)\).


LG d

\(\displaystyle \ln |x - 2| + \ln |x + 4| \le 3\ln 2\)

Phương pháp giải:

Giải bất phương trình bằng phương pháp biến đổi về bất phương trình logarit có cùng cơ số.

Lời giải chi tiết:

ĐK: \(\displaystyle \left\{ \begin{array}{l}\left| {x - 2} \right| > 0\\\left| {x + 4} \right| > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 2\\x \ne  - 4\end{array} \right.\).

Khi đó bpt \(\displaystyle  \Leftrightarrow \ln \left| {(x - 2)(x + 4)} \right| \le \ln 8\)\(\displaystyle  \Leftrightarrow \left| {{x^2} + 2x - 8} \right| \le 8\) \(\displaystyle  \Leftrightarrow  - 8 \le {x^2} + 2x - 8 \le 8\)

\(\displaystyle  \Leftrightarrow \left\{ \begin{array}{l}{x^2} + 2x \ge 0\\{x^2} + 2x - 16 \le 0\end{array} \right.\)\(\displaystyle  \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \le  - 2\\x \ge 0\end{array} \right.\\ - 1 - \sqrt {17}  \le x \le  - 1 + \sqrt {17} \end{array} \right.\) \(\displaystyle  \Leftrightarrow \left[ \begin{array}{l} - 1 - \sqrt {17}  \le x \le  - 2\\0 \le x \le  - 1 + \sqrt {17} \end{array} \right.\)

Vậy tập nghiệm là \(\displaystyle \left[ { - 1 - \sqrt {17} ; - 2} \right] \cup \left[ {0; - 1 + \sqrt {17} } \right]\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"