Bài 2.70 trang 133 SBT giải tích 12

2024-09-14 19:35:13

Giải các bất phương trình mũ sau:

LG a

\(\displaystyle {(8,4)^{\frac{{x - 3}}{{{x^2} + 1}}}} < 1\)

Phương pháp giải:

Biến đổi bất phương trình về cùng cơ số.

Lời giải chi tiết:

\(\displaystyle {(8,4)^{\frac{{x - 3}}{{{x^2} + 1}}}} < 1\)\(\displaystyle  \Leftrightarrow 8,{4^{\frac{{x - 3}}{{{x^2} + 1}}}} < 8,{4^0}\)\(\displaystyle  \Leftrightarrow \frac{{x - 3}}{{{x^2} + 1}} < 0 \)

\( \Leftrightarrow x - 3 < 0\) (vì \(x^2+1>0,\forall x\))

\(\Leftrightarrow x < 3\)


LG b

\(\displaystyle {2^{|x - 2|}} > {4^{|x + 1|}}\)

Phương pháp giải:

Biến đổi bất phương trình về cùng cơ số.

Lời giải chi tiết:

\(\displaystyle {2^{|x - 2|}} > {4^{|x + 1|}}\)\(\displaystyle  \Leftrightarrow {2^{|x - 2|}} > {2^{2|x + 1|}}\)\(\displaystyle  \Leftrightarrow |x - 2| > 2|x + 1|\)

\( \Leftrightarrow {\left( {x - 2} \right)^2} > 4{\left( {x + 1} \right)^2}\)

\(\displaystyle  \Leftrightarrow {x^2} - 4x + 4 > 4({x^2} + 2x + 1)\)

\( \Leftrightarrow {x^2} - 4x + 4 > 4{x^2} + 8x + 4\)

\(\displaystyle  \Leftrightarrow 3{x^2} + 12x < 0\)\(\displaystyle  \Leftrightarrow  - 4 < x < 0\).


LG c

\(\displaystyle \frac{{{4^x} - {2^{x + 1}} + 8}}{{{2^{1 - x}}}} < {8^x}\)

Phương pháp giải:

Giải bất phương trình bằng phương pháp đặt ẩn phụ.

Lời giải chi tiết:

\(\displaystyle \frac{{{4^x} - {2^{x + 1}} + 8}}{{{2^{1 - x}}}} < {8^x}\)

\( \Leftrightarrow {4^x} - {2^{x + 1}} + 8 < {8^x}{.2^{1 - x}}\) (vì \({2^{1 - x}} > 0\))

\(\displaystyle  \Leftrightarrow {2^{2x}} - {2.2^x} + 8 < {2^{3x}}{.2^{1 - x}}\)

\(\begin{array}{l}
\Leftrightarrow {2^{2x}} - {2.2^x} + 8 < {2^{2x + 1}}\\
\Leftrightarrow {2^{2x}} - {2.2^x} + 8 - {2^{2x + 1}} < 0\\
\Leftrightarrow {2^{2x}} - {2.2^x} + 8 - {2.2^{2x}} < 0\\
\Leftrightarrow - {2^{2x}} - {2.2^x} + 8 < 0
\end{array}\)

\(\displaystyle  \Leftrightarrow {2^{2x}} + {2.2^x} - 8 > 0\)

Đặt \(\displaystyle t = {2^x} > 0\) ta được: \(\displaystyle {t^2} + 2t - 8 > 0\) \(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}t <  - 4\\t > 2\end{array} \right.\).

Kết hợp với \(\displaystyle t > 0\) ta được \(\displaystyle t > 2\).

Suy ra \(\displaystyle {2^x} > 2 \Leftrightarrow x > 1\).


LG d

\(\displaystyle \frac{1}{{{3^x} + 5}} \le \frac{1}{{{3^{x + 1}} - 1}}\)

Phương pháp giải:

Giải bất phương trình bằng phương pháp đặt ẩn phụ.

Lời giải chi tiết:

Đặt \(\displaystyle t = {3^x}\left( {t > 0} \right)\), ta có bất phương trình \(\displaystyle \frac{1}{{t + 5}} \le \frac{1}{{3t - 1}}\)

\(\displaystyle  \Leftrightarrow \frac{1}{{t + 5}} - \frac{1}{{3t - 1}} \le 0\)

\( \Leftrightarrow \frac{{3t - 1 - t - 5}}{{\left( {t + 5} \right)\left( {3t - 1} \right)}} \le 0\)

\(\displaystyle  \Leftrightarrow \frac{{2t - 6}}{{\left( {t + 5} \right)\left( {3t - 1} \right)}} \le 0\)

\(\displaystyle  \Leftrightarrow \frac{{2t - 6}}{{3t - 1}} \le 0\) (do \(\displaystyle t + 5 > 0\))

\(\displaystyle  \Leftrightarrow \frac{1}{3} < t \le 3\)

Do đó \(\displaystyle \frac{1}{3} < {3^x} \le 3 \Leftrightarrow  - 1 < x \le 1\) .

Vậy \(\displaystyle  - 1 < x \le 1\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"