Bài 2.67 trang 133 SBT giải tích 12

2024-09-14 19:35:14

Giải các phương trình sau:

LG a

\(\displaystyle {9^x} - {3^x} - 6 = 0\)

Phương pháp giải:

Sử dụng phương pháp đặt ẩn phụ để giải các phương trình.

Lời giải chi tiết:

\(\displaystyle {9^x} - {3^x} - 6 = 0\)

\(\begin{array}{l}
\Leftrightarrow {3^{2x}} - {3^x} - 6 = 0\\
\Leftrightarrow {\left( {{3^x}} \right)^2} - {3^x} - 6 = 0
\end{array}\)

Đặt \(\displaystyle t = {3^x} > 0\) ta được: \(\displaystyle {t^2} - t - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 3\left( {TM} \right)\\t =  - 2\left( {KTM} \right)\end{array} \right.\)

Suy ra \(\displaystyle {3^x} = 3 \Leftrightarrow x = 1\).


LG b

\(\displaystyle {e^{2x}} - 3{e^x} - 4 + 12{e^{ - x}} = 0\)

Phương pháp giải:

Sử dụng phương pháp đặt ẩn phụ để giải các phương trình.

Lời giải chi tiết:

\(\displaystyle {e^{2x}} - 3{e^x} - 4 + 12{e^{ - x}} = 0\)

\( \Leftrightarrow {\left( {{e^x}} \right)^2} - 3{e^x} - 4 + 12.\frac{1}{{{e^x}}} = 0\)

Đặt \(\displaystyle t = {e^x}(t > 0)\), ta có phương trình  \(\displaystyle {t^2} - 3t - 4 + \frac{{12}}{t} = 0\) 

\(\displaystyle  \Rightarrow {t^3} - 3{t^2} - 4t + 12 = 0\)\(\displaystyle  \Leftrightarrow (t - 2)(t + 2)(t - 3) = 0\) \(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}t = 2\\t =  - 2(l)\\t = 3\end{array} \right.\)

Do đó  \(\displaystyle \left[ \begin{array}{l}{e^x} = 2\\{e^x} = 3\end{array} \right.\)  hay \(\displaystyle \left[ \begin{array}{l}x = \ln 2\\x = \ln 3\end{array} \right.\)


LG c

\(\displaystyle {3.4^x} + \frac{1}{3}{.9^{x + 2}} = {6.4^{x + 1}} - \frac{1}{2}{.9^{x + 1}}\)

Phương pháp giải:

Chia cả hai vế của phương trình cho một biểu thức mũ, biến đổi phương trình về dạng \(\displaystyle {a^{f\left( x \right)}} = {a^m} \Leftrightarrow f\left( x \right) = m\).

Lời giải chi tiết:

\(\displaystyle {3.4^x} + \frac{1}{3}{.9^{x + 2}} = {6.4^{x + 1}} - \frac{1}{2}{.9^{x + 1}}\)\(\displaystyle  \Leftrightarrow {3.4^x} + \frac{1}{3}{.9^x}{.9^2} = {6.4^x}.4 - \frac{1}{2}{.9^x}.9\)

\(\displaystyle  \Leftrightarrow {3.4^x} + {27.9^x} = {24.4^x} - \frac{9}{2}{.9^x}\) \( \Leftrightarrow {27.9^x} + \frac{9}{2}{.9^x} = {24.4^x} - {3.4^x}\)

\(\displaystyle  \Leftrightarrow \frac{{63}}{2}{.9^x} = {21.4^x}\) \(\displaystyle  \Leftrightarrow {63.9^x} = {42.4^x}\) \( \Leftrightarrow \frac{{{9^x}}}{{{4^x}}} = \frac{{42}}{{63}}\) \(\displaystyle  \Leftrightarrow {\left( {\frac{9}{4}} \right)^x} = \frac{2}{3}\)

\(\displaystyle  \Leftrightarrow {\left( {\frac{3}{2}} \right)^{2x}} = {\left( {\frac{3}{2}} \right)^{ - 1}}\)\(\displaystyle  \Leftrightarrow 2x =  - 1 \Leftrightarrow x =  - \frac{1}{2}\)


LG d

\(\displaystyle {2^{{x^2} - 1}} - {3^{{x^2}}} = {3^{{x^2} - 1}} - {2^{{x^2} + 2}}\)

Phương pháp giải:

Chia cả hai vế của phương trình cho một biểu thức mũ, biến đổi phương trình về dạng \(\displaystyle {a^{f\left( x \right)}} = {a^m} \Leftrightarrow f\left( x \right) = m\).

Lời giải chi tiết:

\(\displaystyle {2^{{x^2} - 1}} - {3^{{x^2}}} = {3^{{x^2} - 1}} - {2^{{x^2} + 2}}\) \(\displaystyle  \Leftrightarrow \frac{1}{2}{.2^{{x^2}}} - {3^{{x^2}}} = \frac{1}{3}{.3^{{x^2}}} - {4.2^{{x^2}}}\) \( \Leftrightarrow \frac{1}{2}{.2^{{x^2}}} + {4.2^{{x^2}}} = \frac{1}{3}{.3^{{x^2}}} + {3^{{x^2}}}\)

\(\displaystyle  \Leftrightarrow \frac{9}{2}{.2^{{x^2}}} = \frac{4}{3}{.3^{{x^2}}} \)

\(\begin{array}{l}
\Leftrightarrow {27.2^{{x^2}}} = {8.3^{{x^2}}}\\
\Leftrightarrow \frac{{{2^{{x^2}}}}}{{{3^{{x^2}}}}} = \frac{8}{{27}}
\end{array}\)

\(\Leftrightarrow {\left( {\frac{2}{3}} \right)^{{x^2}}} = {\left( {\frac{2}{3}} \right)^3}\)

\(\displaystyle  \Leftrightarrow {x^2} = 3 \Leftrightarrow \left[ \begin{array}{l}x = \sqrt 3 \\x =  - \sqrt 3 \end{array} \right.\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"