Bài 3.4 trang 164 SBT giải tích 12

2024-09-14 19:35:21

Tính các nguyên hàm sau bằng phương pháp đổi biến số:

LG câu a

a) \(\int {{x^2}\sqrt[3]{{1 + {x^3}}}} dx\)  với \(x >  - 1\) (đặt \(t = 1 + {x^3}\))

Phương pháp giải:

Đặt \(t = u\left( x \right)\), tính \(dx\) theo \(dt\) thay vào nguyên hàm cần tính.

Giải chi tiết:

Đặt \(t = 1 + {x^3}\)\( \Rightarrow dt = 3{x^2}dx \Rightarrow {x^2}dx = \dfrac{{dt}}{3}\).

Khi đó \(\int {{x^2}\sqrt[3]{{1 + {x^3}}}} dx = \int {\sqrt[3]{t}.\dfrac{{dt}}{3}} \) \( = \dfrac{1}{3}\int {{t^{\dfrac{1}{3}}}dt}  = \dfrac{1}{3}.\dfrac{{{t^{\dfrac{1}{3} + 1}}}}{{\dfrac{1}{3} + 1}} + C\) \( = \dfrac{1}{4}{t^{\dfrac{4}{3}}} + C = \dfrac{1}{4}{\left( {1 + {x^3}} \right)^{\dfrac{4}{3}}} + C\)


LG câu b

b) \(\int {x{e^{ - {x^2}}}} dx\)  (đặt \(t = {x^2}\))

Phương pháp giải:

Đặt \(t = u\left( x \right)\), tính \(dx\) theo \(dt\) thay vào nguyên hàm cần tính.

Giải chi tiết:

Đặt \(t = {x^2} \Rightarrow dt = 2xdx\) \( \Rightarrow xdx = \dfrac{{dt}}{2}\)

Khi đó \(\int {x{e^{ - {x^2}}}} dx = \int {{e^{ - t}}.\dfrac{{dt}}{2}} \)\( =  - \dfrac{1}{2}{e^{ - t}} + C =  - \dfrac{1}{2}{e^{ - {x^2}}} + C\).


LG câu c

c) \(\int {\dfrac{x}{{{{(1 + {x^2})}^2}}}} dx\)   (đặt \(t = 1 + {x^2}\))

Phương pháp giải:

Đặt \(t = u\left( x \right)\), tính \(dx\) theo \(dt\) thay vào nguyên hàm cần tính.

Giải chi tiết:

Đặt \(t = 1 + {x^2}\)\( \Rightarrow dt = 2xdx \Rightarrow xdx = \dfrac{{dt}}{2}\).

Khi đó, \(\int {\dfrac{x}{{{{(1 + {x^2})}^2}}}} dx = \int {\dfrac{1}{{{t^2}}}.\dfrac{{dt}}{2}}  = \dfrac{1}{2}\int {\dfrac{{dt}}{{{t^2}}}} \) \( =  - \dfrac{1}{2}.\dfrac{1}{t} + C =  - \dfrac{1}{{2\left( {1 + {x^2}} \right)}} + C\)


LG câu d

d) \(\int {\dfrac{1}{{(1 - x)\sqrt x }}} dx\) (đặt \(t = \sqrt x \))

Phương pháp giải:

Đặt \(t = u\left( x \right)\), tính \(dx\) theo \(dt\) thay vào nguyên hàm cần tính.

Giải chi tiết:

Đặt \(t = \sqrt x  \Rightarrow dt = \dfrac{1}{{2\sqrt x }}dx\)\( \Rightarrow \dfrac{{dx}}{{\sqrt x }} = 2dt\) và \(x = {t^2}\).

Khi đó \(\int {\dfrac{1}{{(1 - x)\sqrt x }}} dx\)\( = \int {\dfrac{1}{{\left( {1 - {t^2}} \right)}}.2dt}  = \int {\dfrac{2}{{1 - {t^2}}}dt} \) \( = \int {\left( {\dfrac{1}{{1 - t}} + \dfrac{1}{{1 + t}}} \right)dt} \)

\( =  - \ln \left| {1 - t} \right| + \ln \left| {1 + t} \right| + C\) \( = \ln \left| {\dfrac{{1 + t}}{{1 - t}}} \right| + C\)\( = \ln \left| {\dfrac{{1 + \sqrt x }}{{1 - \sqrt x }}} \right| + C\).


LG câu e

e) \(\int {\sin \dfrac{1}{x}.\dfrac{1}{{{x^2}}}} dx\)  (đặt \(t = \dfrac{1}{x}\) )

Phương pháp giải:

Đặt \(t = u\left( x \right)\), tính \(dx\) theo \(dt\) thay vào nguyên hàm cần tính.

Giải chi tiết:

Đặt \(t = \dfrac{1}{x}\)\( \Rightarrow dt =  - \dfrac{1}{{{x^2}}}dx \Rightarrow \dfrac{{dx}}{{{x^2}}} =  - dt\).

Khi đó \(\int {\sin \dfrac{1}{x}.\dfrac{1}{{{x^2}}}} dx\)\( = \int {\sin t.\left( { - dt} \right)}  = \int {\left( { - \sin t} \right)dt} \) \( = \cos t + C = \cos \dfrac{1}{x} + C\)


LG câu g

g) \(\int {\dfrac{{{{(\ln x)}^2}}}{x}} dx\)  (đặt \(t = \ln x\))

Phương pháp giải:

Đặt \(t = u\left( x \right)\), tính \(dx\) theo \(dt\) thay vào nguyên hàm cần tính.

Giải chi tiết:

Đặt \(t = \ln x\)\( \Rightarrow dt = \dfrac{{dx}}{x}\). Khi đó

\(\int {\dfrac{{{{(\ln x)}^2}}}{x}} dx = \int {{t^2}.dt} \)\( = \dfrac{{{t^3}}}{3} + C = \dfrac{{{{\ln }^3}x}}{3} + C\)


LG câu h

h) \(\int {\dfrac{{\sin x}}{{\sqrt[3]{{{{\cos }^2}x}}}}} dx\)   (đặt \(t = \cos x\))

Phương pháp giải:

Đặt \(t = u\left( x \right)\), tính \(dx\) theo \(dt\) thay vào nguyên hàm cần tính.

Giải chi tiết:

Đặt \(t = \cos x\)\( \Rightarrow dt =  - \sin xdx\).

Khi đó \(\int {\dfrac{{\sin x}}{{\sqrt[3]{{{{\cos }^2}x}}}}} dx\)\( = \int {\dfrac{{ - dt}}{{\sqrt[3]{{{t^2}}}}}}  = \int { - {t^{ - \dfrac{2}{3}}}dt} \) \( =  - \dfrac{{{t^{ - \dfrac{2}{3} + 1}}}}{{ - \dfrac{2}{3} + 1}} + C =  - 3{t^{\dfrac{1}{3}}} + C\) \( =  - 3\sqrt[3]{t} + C =  - 3\sqrt[3]{{\cos x}} + C\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"