Bài 3.24 trang 172 SBT giải tích 12

2024-09-14 19:35:24

Đề bài

Hãy chỉ ra kết quả nào dưới đây đúng:

a) \(\int\limits_0^{\dfrac{\pi }{2}} {\sin xdx}  + \int\limits_{\dfrac{\pi }{2}}^{\dfrac{{3\pi }}{2}} {\sin xdx}  + \int\limits_{\dfrac{{3\pi }}{2}}^{2\pi } {\sin xdx = 0} \)

b) \(\int\limits_0^{\dfrac{\pi }{2}} {\left( {\sqrt[3]{{\sin x}} - \sqrt[3]{{\cos x}}} \right)dx}  = 0\)

c) \(\int\limits_{ - \dfrac{1}{2}}^{\dfrac{1}{2}} {\ln \dfrac{{1 - x}}{{1 + x}}dx}  = 0\)

d) \(\int\limits_0^2 {\left( {\dfrac{1}{{1 + x + {x^2} + {x^3}}} + 1} \right)dx}  = 0\)

Phương pháp giải - Xem chi tiết

Xét tính đúng sai của mỗi đáp án bằng cách tính các tích phân, sử dụng kiến thức các bài tập trước đã làm.

Lời giải chi tiết

a) Đúng (vì vế trái bằng \(\int\limits_0^{2\pi } {\sin xdx = 0} \))

b) Đúng vì \(\int\limits_0^{\dfrac{\pi }{2}} {\sqrt[3]{{\sin x}}dx}  = \int\limits_0^{\dfrac{\pi }{2}} {\sqrt[3]{{\cos x}}dx} \) (theo bài 3.22) nên \(\int\limits_0^{\dfrac{\pi }{2}} {\left( {\sqrt[3]{{\sin x}} - \sqrt[3]{{\cos x}}} \right)dx}  = 0\).

c) Đúng vì hàm số \(f\left( x \right) = \ln \dfrac{{1 - x}}{{1 + x}}\) là hàm số lẻ nên \(\int\limits_{ - \dfrac{1}{2}}^{\dfrac{1}{2}} {\ln \dfrac{{1 - x}}{{1 + x}}dx}  = 0\) (theo bài 3.21).

Chú ý: Cách chứng minh hàm số lẻ: Kiểm tra \(f\left( { - x} \right) =  - f\left( x \right)\) trên tập xác định \(D\) đối xứng.

d) Sai: Vì \(1 + \dfrac{1}{{1 + x + {x^2} + {x^3}}} > 1,x \in {\rm{[}}0;2]\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"