Bài 3.23 trang 172 SBT giải tích 12

2024-09-14 19:35:24

Đặt \({I_n} = \int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^n}xdx} ,n \in {N^*}\)

LG câu a

a) Chứng minh rằng \({I_n} = \dfrac{{n - 1}}{n}{I_{n - 2}},n > 2\)

Phương pháp giải:

Sử dụng phương pháp tích phân từng phần, đặt \(u = {\sin ^{n - 1}}x\) và \(dv = \sin xdx\)

Giải chi tiết:

Xét với \(n > 2\), ta có: \({I_n} = \int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^{n - 1}}x.\sin xdx} \)

Dùng tích phân từng phần với \(u = {\sin ^{n - 1}}x\) và \(dv = \sin xdx\), ta có: \(\left\{ \begin{array}{l}du = \left( {n - 1} \right){\sin ^{n - 2}}x\cos xdx\\v =  - \cos x\end{array} \right.\)

\({I_n} = \int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^{n - 1}}x\sin xdx} \)\( = \left. { - \cos x{{\sin }^{n - 1}}x} \right|_0^{\dfrac{\pi }{2}}\) \( + (n - 1)\int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^{n - 2}}x{{\cos }^2}xdx} \)

\( = \left( {n - 1} \right)\int\limits_0^{\dfrac{\pi }{2}} {\left( {{{\sin }^{n - 2}}x - {{\sin }^n}x} \right)dx} \)\( = \left( {n - 1} \right){I_{n - 2}} - \left( {n - 1} \right){I_n}\)

Vậy \({I_n} = \dfrac{{n - 1}}{n}{I_{n - 2}}\)


LG câu b

b) Tính \({I_3}\) và \({I_5}\).

Phương pháp giải:

Thay \(n = 3,n = 5\) vào tính \({I_3},{I_5}\).

Giải chi tiết:

Ta có: \({I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} \)\( = \left. { - \cos x} \right|_0^{\dfrac{\pi }{2}} = 1\).

Suy ra \({I_3} = \dfrac{{3 - 1}}{3}{I_1} = \dfrac{2}{3}.1 = \dfrac{2}{3}\); \({I_5} = \dfrac{{5 - 1}}{5}{I_3} = \dfrac{4}{5}.\dfrac{2}{3} = \dfrac{8}{{15}}\).

Vậy \({I_3} = \dfrac{2}{3},{I_5} = \dfrac{8}{{15}}\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"