Bài 3.19 trang 171 SBT giải tích 12

2024-09-14 19:35:25

Tính các tích phân sau đây:

LG câu a

a) \(I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {x + 1} \right)\cos \left( {x + \dfrac{\pi }{2}} \right)} dx\)

Phương pháp giải:

Sử dụng phương pháp tích phân từng phần, chú ý \(\cos \left( {x + \dfrac{\pi }{2}} \right) =  - \sin x\).

Giải chi tiết:

Ta có: \(I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {x + 1} \right)\cos \left( {x + \dfrac{\pi }{2}} \right)} dx\) \( =  - \int\limits_0^{\dfrac{\pi }{2}} {\left( {x + 1} \right)\sin x} dx\)

Đặt \(\left\{ \begin{array}{l}u = x + 1\\dv = \sin xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v =  - \cos x\end{array} \right.\)

\( \Rightarrow I =  - \left[ { - \left. {\left( {x + 1} \right)\cos x} \right|_0^{\dfrac{\pi }{2}} + \int\limits_0^{\dfrac{\pi }{2}} {\cos xdx} } \right]\) \( =  - \left( {1 + \left. {\sin x} \right|_0^{\dfrac{\pi }{2}}} \right) =  - \left( {1 + 1} \right) =  - 2\)


LG câu b

b) \(I = \int\limits_0^1 {\dfrac{{{x^2} + x + 1}}{{x + 1}}{{\log }_2}\left( {x + 1} \right)dx} \)

Phương pháp giải:

Biến đổi \(\dfrac{{{x^2} + x + 1}}{{x + 1}}{\log _2}(x + 1)\)\( = \dfrac{1}{{\ln 2}}\left[ {x\ln (x + 1) + \dfrac{{\ln (x + 1)}}{{x + 1}}} \right]\) rồi chia thành các tích phân nhỏ, sử dụng phương pháp tích phân từng phần và đổi biến để tính.

Giải chi tiết:


Ta có: \(\dfrac{{{x^2} + x + 1}}{{x + 1}}{\log _2}(x + 1)\)\( = \left( {x + \dfrac{1}{{x + 1}}} \right).\dfrac{{\ln \left( {x + 1} \right)}}{{\ln 2}}\) \( = \dfrac{1}{{\ln 2}}\left[ {x\ln (x + 1) + \dfrac{{\ln (x + 1)}}{{x + 1}}} \right]\)

Khi đó \(I = \int\limits_0^1 {\dfrac{{{x^2} + x + 1}}{{x + 1}}{{\log }_2}\left( {x + 1} \right)dx} \) \( = \dfrac{1}{{\ln 2}}\int\limits_0^1 {x\ln \left( {x + 1} \right)dx} \) \( + \dfrac{1}{{\ln 2}}\int\limits_0^1 {\dfrac{{\ln \left( {x + 1} \right)}}{{x + 1}}dx} \)

Tính \(J = \int\limits_0^1 {x\ln \left( {x + 1} \right)dx} \).

Đặt \(\left\{ \begin{array}{l}u = \ln \left( {x + 1} \right)\\dv = xdx\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}du = \dfrac{1}{{x + 1}}dx\\v = \dfrac{{{x^2}}}{2}\end{array} \right.\)

\( \Rightarrow J = \left. {\dfrac{{{x^2}}}{2}\ln \left( {x + 1} \right)} \right|_0^1 - \dfrac{1}{2}\int\limits_0^1 {\dfrac{{{x^2}}}{{x + 1}}dx} \) \( = \dfrac{{\ln 2}}{2} - \dfrac{1}{2}\int\limits_0^1 {\left( {x - 1 + \dfrac{1}{{x + 1}}} \right)dx} \) \( = \dfrac{1}{2}\ln 2 - \dfrac{1}{2}\left. {\left( {\dfrac{{{x^2}}}{2} - x + \ln \left( {x + 1} \right)} \right)} \right|_0^1\)

\( = \dfrac{1}{2}\ln 2 - \dfrac{1}{2}\left( {\dfrac{1}{2} - 1 + \ln 2} \right)\) \( = \dfrac{1}{4}\)

Tính \(K = \int\limits_0^1 {\dfrac{{\ln \left( {x + 1} \right)}}{{x + 1}}dx} \).

Đặt \(\ln \left( {x + 1} \right) = t \Rightarrow dt = \dfrac{{dx}}{{x + 1}}\) \( \Rightarrow K = \int\limits_0^{\ln 2} {tdt}  = \left. {\dfrac{{{t^2}}}{2}} \right|_0^{\ln 2} = \dfrac{{{{\ln }^2}2}}{2}\)

Vậy \(I = \dfrac{1}{{\ln 2}}J + \dfrac{1}{{\ln 2}}K\) \( = \dfrac{1}{{4\ln 2}} + \dfrac{{\ln 2}}{2}\).


LG câu c

c) \(I = \int\limits_{\dfrac{1}{2}}^1 {\dfrac{{{x^2} - 1}}{{{x^4} + 1}}} dx\)

Phương pháp giải:

- Nhân cả tử và mẫu của biểu thức dưới dấu tích phân với \({x^2}\).

- Đổi biến \(t = x + \dfrac{1}{x}\) và tính tích phân.

Giải chi tiết:

Đặt \(t = x + \dfrac{1}{x}\)\( \Rightarrow dt = 1 - \dfrac{1}{{{x^2}}}dx = \dfrac{{{x^2} - 1}}{{{x^2}}}dx\) và \({t^2} = {x^2} + 2 + \dfrac{1}{{{x^2}}} = \dfrac{{{x^4} + 1}}{{{x^2}}} + 2\) \( \Rightarrow \dfrac{{{x^2}}}{{{x^4} + 1}} = \dfrac{1}{{{t^2} - 2}}\).

Khi đó \(I = \int\limits_{\dfrac{1}{2}}^1 {\dfrac{{{x^2} - 1}}{{{x^4} + 1}}} dx\)\( = \int\limits_{\dfrac{1}{2}}^1 {\dfrac{{{x^2}}}{{{x^4} + 1}}.\dfrac{{{x^2} - 1}}{{{x^2}}}dx} \) \( = \int\limits_{\dfrac{5}{2}}^2 {\dfrac{{dt}}{{{t^2} - 2}}} \) \( = \dfrac{1}{{2\sqrt 2 }}\int\limits_{\dfrac{5}{2}}^2 {\left( {\dfrac{1}{{t - \sqrt 2 }} - \dfrac{1}{{t + \sqrt 2 }}} \right)dt} \)

\( = \left. {\ln \left| {\dfrac{{t - \sqrt 2 }}{{t + \sqrt 2 }}} \right|} \right|_{\dfrac{5}{2}}^2 = \dfrac{1}{{2\sqrt 2 }}\ln \dfrac{{6 - \sqrt 2 }}{{6 + \sqrt 2 }}\).


LG câu d

d) \(I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sin 2xdx}}{{3 + 4\sin x - \cos 2x}}} \)

Phương pháp giải:

- Biến đổi \(\dfrac{{\sin 2x}}{{3 + 4\sin x - \cos 2x}}\)\( = \dfrac{{\sin x\cos x}}{{{{\left( {\sin x + 1} \right)}^2}}}\).

- Đổi biến \(t = \sin x\) và tính tích phân.

Giải chi tiết:

Ta có: \(\dfrac{{\sin 2x}}{{3 + 4\sin x - \cos 2x}}\) \( = \dfrac{{2\sin x\cos x}}{{3 + 4\sin x - 1 + 2{{\sin }^2}x}}\) \( = \dfrac{{\sin x\cos x}}{{{{\sin }^2} + 2\sin x + 1}}\) \( = \dfrac{{\sin x\cos x}}{{{{\left( {\sin x + 1} \right)}^2}}}\)

Khi đó \(I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sin x\cos x}}{{{{\left( {\sin x + 1} \right)}^2}}}dx} \).

Đặt \(\sin x = t \Rightarrow dt = \cos xdx\).

\( \Rightarrow I = \int\limits_0^1 {\dfrac{{tdt}}{{{{\left( {t + 1} \right)}^2}}}} \) \( = \int\limits_0^1 {\left( {\dfrac{1}{{t + 1}} - \dfrac{1}{{{{\left( {t + 1} \right)}^2}}}} \right)dt} \) \( = \left. {\left[ {\ln \left( {t + 1} \right) + \dfrac{1}{{t + 1}}} \right]} \right|_0^1\) \( = \ln 2 + \dfrac{1}{2} - 1 = \ln 2 - \dfrac{1}{2}\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"