Bài 3.18 trang 171 SBT giải tích 12

2024-09-14 19:35:25

Áp dụng phương pháp tính tích phân từng phần, hãy tính các tích phân sau:

LG câu a

a) \(\int\limits_0^{\dfrac{\pi }{2}} {x\cos 2xdx} \)

Phương pháp giải:

Sử dụng công thức tích phân từng phần:

\(\int\limits_a^b {u\left( x \right)d\left( {v\left( x \right)} \right)} \) \( = \left. {\left[ {u\left( x \right)v\left( x \right)} \right]} \right|_a^b - \int\limits_a^b {v\left( x \right)d\left( {u\left( x \right)} \right)} \)

Lời giải chi tiết:

\(I = \int\limits_0^{\dfrac{\pi }{2}} {x\cos 2xdx} \)

Đặt \(\left\{ \begin{array}{l}u = x\\dv = \cos 2xdx\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}du = dx\\v = \dfrac{{\sin 2x}}{2}\end{array} \right.\)

\( \Rightarrow I = \left. {\dfrac{{x\sin 2x}}{2}} \right|_0^{\dfrac{\pi }{2}} - \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {\sin 2xdx} \) \( = \dfrac{1}{2}.\left. {\dfrac{{\cos 2x}}{2}} \right|_0^{\dfrac{\pi }{2}} =  - \dfrac{1}{4} - \dfrac{1}{4} =  - \dfrac{1}{2}\)


LG câu b

b) \(\int\limits_0^{\ln 2} {x{e^{ - 2x}}dx} \)

Phương pháp giải:

Sử dụng công thức tích phân từng phần:

\(\int\limits_a^b {u\left( x \right)d\left( {v\left( x \right)} \right)} \) \( = \left. {\left[ {u\left( x \right)v\left( x \right)} \right]} \right|_a^b - \int\limits_a^b {v\left( x \right)d\left( {u\left( x \right)} \right)} \)

Lời giải chi tiết:

\(I = \int\limits_0^{\ln 2} {x{e^{ - 2x}}dx} \)

Đặt \(\left\{ \begin{array}{l}u = x\\dv = {e^{ - 2x}}dx\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}du = dx\\v =  - \dfrac{{{e^{ - 2x}}}}{2}\end{array} \right.\)

\( \Rightarrow I = \left. { - \dfrac{{x{e^{ - 2x}}}}{2}} \right|_0^{\ln 2} + \dfrac{1}{2}\int\limits_0^{\ln 2} {{e^{ - 2x}}dx} \) \( =  - \dfrac{{\ln 2.{e^{ - 2\ln 2}}}}{2} - \dfrac{1}{2}.\left. {\dfrac{{{e^{ - 2x}}}}{2}} \right|_0^{\ln 2}\) \( =  - \dfrac{{\ln 2}}{8} + \dfrac{3}{{16}}\)


LG câu c

c) \(\int\limits_0^1 {\ln (2x + 1)dx} \)

Phương pháp giải:

Sử dụng công thức tích phân từng phần:

\(\int\limits_a^b {u\left( x \right)d\left( {v\left( x \right)} \right)} \) \( = \left. {\left[ {u\left( x \right)v\left( x \right)} \right]} \right|_a^b - \int\limits_a^b {v\left( x \right)d\left( {u\left( x \right)} \right)} \)

Lời giải chi tiết:

\(I = \int\limits_0^1 {\ln (2x + 1)dx} \)

Đặt \(\left\{ \begin{array}{l}u = \ln \left( {2x + 1} \right)\\dv = dx\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}du = \dfrac{2}{{2x + 1}}dx\\v = x\end{array} \right.\)

\( \Rightarrow I = \left. {x\ln \left( {2x + 1} \right)} \right|_0^1 - \int\limits_0^1 {\dfrac{{2x}}{{2x + 1}}dx} \) \( = \ln 3 - \int\limits_0^1 {\left( {1 - \dfrac{1}{{2x + 1}}} \right)dx} \) \( = \ln 3 - \left. {\left( {x - \dfrac{{\ln \left( {2x + 1} \right)}}{2}} \right)} \right|_0^1\) \( = \ln 3 - \left( {1 - \dfrac{{\ln 3}}{2}} \right) = \dfrac{3}{2}\ln 3 - 1\)


LG câu d

d) \(\int\limits_2^3 {{\rm{[}}\ln (x - 1) - \ln (x + 1){\rm{]}}dx} \)

Phương pháp giải:

Sử dụng công thức tích phân từng phần:

\(\int\limits_a^b {u\left( x \right)d\left( {v\left( x \right)} \right)} \) \( = \left. {\left[ {u\left( x \right)v\left( x \right)} \right]} \right|_a^b - \int\limits_a^b {v\left( x \right)d\left( {u\left( x \right)} \right)} \)

Lời giải chi tiết:

\(I = \int\limits_2^3 {\left[ {\ln \left( {x - 1} \right) - \ln \left( {x + 1} \right)} \right]dx} \) \( = \int\limits_2^3 {\ln \left( {x - 1} \right)dx}  - \int\limits_2^3 {\ln \left( {x + 1} \right)dx} \) \( = J - K\) với \(J = \int\limits_2^3 {\ln \left( {x - 1} \right)dx} \) và \(K = \int\limits_2^3 {\ln \left( {x + 1} \right)dx} \).

+) Tính \(J = \int\limits_2^3 {\ln \left( {x - 1} \right)dx} \).

Đặt \(\left\{ \begin{array}{l}u = \ln \left( {x - 1} \right)\\dv = dx\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}du = \dfrac{{dx}}{{x - 1}}\\v = x\end{array} \right.\)

\( \Rightarrow J = \left. {x\ln \left( {x - 1} \right)} \right|_2^3 - \int\limits_2^3 {\dfrac{x}{{x - 1}}dx} \) \( = 3\ln 2 - \int\limits_2^3 {\left( {1 + \dfrac{1}{{x - 1}}} \right)dx} \) \( = 3\ln 2 - \left. {\left( {x + \ln \left( {x - 1} \right)} \right)} \right|_2^3\) \( = 3\ln 2 - 3 - \ln 2 + 2\) \( = 2\ln 2 - 1\).

+) Tính \(K = \int\limits_2^3 {\ln \left( {x + 1} \right)dx} \).

Đặt \(\left\{ \begin{array}{l}u = \ln \left( {x + 1} \right)\\dv = dx\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}du = \dfrac{{dx}}{{x + 1}}\\v = x\end{array} \right.\)

\( \Rightarrow K = \left. {x\ln \left( {x + 1} \right)} \right|_2^3 - \int\limits_2^3 {\dfrac{x}{{x + 1}}dx} \) \( = 3\ln 4 - 2\ln 3 - \int\limits_2^3 {\left( {1 - \dfrac{1}{{x + 1}}} \right)dx} \) \( = 6\ln 2 - 2\ln 3 - \left. {\left( {x - \ln \left( {x + 1} \right)} \right)} \right|_2^3\) \( = 6\ln 2 - 2\ln 3 - 3 + \ln 4 + 2 - \ln 3\) \( = 8\ln 2 - 3\ln 3 - 1\).

\( \Rightarrow I = J - K\) \( = 2\ln 2 - 1 - \left( {8\ln 2 - 3\ln 3 - 1} \right)\) \( = 3\ln 3 - 6\ln 2\)


LG câu e

e) \(\int\limits_{\dfrac{1}{2}}^2 {\left( {1 + x - \dfrac{1}{x}} \right){e^{x + \dfrac{1}{x}}}dx} \)

Phương pháp giải:

Sử dụng công thức tích phân từng phần:

\(\int\limits_a^b {u\left( x \right)d\left( {v\left( x \right)} \right)} \) \( = \left. {\left[ {u\left( x \right)v\left( x \right)} \right]} \right|_a^b - \int\limits_a^b {v\left( x \right)d\left( {u\left( x \right)} \right)} \)

Lời giải chi tiết:

\(I = \int\limits_{\dfrac{1}{2}}^2 {\left( {1 + x - \dfrac{1}{x}} \right){e^{x + \dfrac{1}{x}}}dx} \)\( = \int\limits_{\dfrac{1}{2}}^2 {{e^{x + \dfrac{1}{x}}}} dx + \int\limits_{\dfrac{1}{2}}^2 {\left( {x - \dfrac{1}{x}} \right){e^{x + \dfrac{1}{x}}}dx} \) \( = J + K\) với \(J = \int\limits_{\dfrac{1}{2}}^2 {{e^{x + \dfrac{1}{x}}}} dx\) và \(K = \int\limits_{\dfrac{1}{2}}^2 {\left( {x - \dfrac{1}{x}} \right){e^{x + \dfrac{1}{x}}}dx} \)

+) Tính \(J = \int\limits_{\dfrac{1}{2}}^2 {{e^{x + \dfrac{1}{x}}}} dx\)

Đặt \(\left\{ \begin{array}{l}u = {e^{x + \dfrac{1}{x}}}\\dv = dx\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}du = \left( {1 - \dfrac{1}{{{x^2}}}} \right)dx\\v = x\end{array} \right.\)

\( \Rightarrow J = \left. {x{e^{x + \dfrac{1}{x}}}} \right|_{\dfrac{1}{2}}^2 - \int\limits_{\dfrac{1}{2}}^2 {\left( {x - \dfrac{1}{x}} \right){e^{x + \dfrac{1}{x}}}dx} \) \( = \left. {x{e^{x + \dfrac{1}{x}}}} \right|_{\dfrac{1}{2}}^2 - K\) \( = 2{e^{\dfrac{5}{2}}} - \dfrac{1}{2}{e^{\dfrac{5}{2}}} - K = \dfrac{3}{2}{e^{\dfrac{5}{2}}} - K\)

Suy ra \(I = J + K\) \( = \dfrac{3}{2}{e^{\dfrac{5}{2}}} - K + K = \dfrac{3}{2}{e^{\dfrac{5}{2}}}\).


LG câu g

g) \(\int\limits_0^{\dfrac{\pi }{2}} {x\cos x{{\sin }^2}xdx} \)

Phương pháp giải:

Sử dụng công thức tích phân từng phần:

\(\int\limits_a^b {u\left( x \right)d\left( {v\left( x \right)} \right)} \) \( = \left. {\left[ {u\left( x \right)v\left( x \right)} \right]} \right|_a^b - \int\limits_a^b {v\left( x \right)d\left( {u\left( x \right)} \right)} \)

Lời giải chi tiết:

\(I = \int\limits_0^{\dfrac{\pi }{2}} {x\cos x{{\sin }^2}xdx} \)

Đặt  \(u = x,dv = \cos x{\sin ^2}xdx\) \( \Rightarrow du = dx\). Ta tìm \(v = \int {\cos x{{\sin }^2}xdx} \).

Đặt \(\sin x = t \Rightarrow dt = \cos xdx\)

\( \Rightarrow \int {\cos x{{\sin }^2}xdx}  = \int {{t^2}dt} \) \( = \dfrac{{{t^3}}}{3} + C = \dfrac{{{{\sin }^3}x}}{3} + C\)

Chọn \(v = \dfrac{{{{\sin }^3}x}}{3}\) ta có:

\(I = \int\limits_0^{\dfrac{\pi }{2}} {x\cos x{{\sin }^2}xdx} \)\( = \left. {\dfrac{{x{{\sin }^3}x}}{3}} \right|_0^{\dfrac{\pi }{2}} - \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^3}x}}{3}dx} \) \( = \dfrac{\pi }{6} - \dfrac{1}{3}\int\limits_0^{\dfrac{\pi }{2}} {\left( {1 - {{\cos }^2}x} \right)\sin xdx} \) \( = \dfrac{\pi }{6} - \dfrac{1}{3}J\)

Đặt \(\cos x = t \Rightarrow dt =  - \sin xdx\)

\( \Rightarrow J = \int\limits_1^0 {\left( {1 - {t^2}} \right).\left( { - dt} \right)} \) \( = \int\limits_0^1 {\left( {1 - {t^2}} \right)dt} \) \( = \left. {\left( {t - \dfrac{{{t^3}}}{3}} \right)} \right|_0^1 = \dfrac{2}{3}\)

Vậy \(I = \dfrac{\pi }{6} - \dfrac{1}{3}J\) \( = \dfrac{\pi }{6} - \dfrac{1}{3}.\dfrac{2}{3} = \dfrac{\pi }{6} - \dfrac{2}{9}\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"