Bài 3.17 trang 170 SBT giải tích 12

2024-09-14 19:35:25

Tính các tích phân sau bằng phương pháp đổi biến:

LG câu a

a) \(\int\limits_1^2 {x{{(1 - x)}^5}dx} \)  (đặt  \(t = 1 - x\))

Phương pháp giải:

Sử dụng phương pháp đổi biến tính tích phân, cách đổi biến đã được gợi ý ngay ở đề bài.

Giải chi tiết:

\(\int\limits_1^2 {x{{(1 - x)}^5}dx} \)

Đặt \(t = 1 - x\)\( \Rightarrow dt =  - dx\)

Đổi cận: \(x = 1 \Rightarrow t = 0\), \(x = 2 \Rightarrow t =  - 1\)

Khi đó \(\int\limits_1^2 {x{{(1 - x)}^5}dx} \)\( = \int\limits_0^{ - 1} {\left( {1 - t} \right).{t^5}\left( { - dt} \right)} \) \( = \int\limits_{ - 1}^0 {\left( {{t^5} - {t^6}} \right)dt} \) \( = \left. {\left( {\dfrac{{{t^6}}}{6} - \dfrac{{{t^7}}}{7}} \right)} \right|_{ - 1}^0\) \( = 0 - \dfrac{1}{6} + \dfrac{{ - 1}}{7} =  - \dfrac{{13}}{{42}}\)


LG câu b

b) \(\int\limits_0^{\ln 2} {\sqrt {{e^x} - 1} dx} \)    (đặt \(t = \sqrt {{e^x} - 1} \))

Phương pháp giải:

Sử dụng phương pháp đổi biến tính tích phân, cách đổi biến đã được gợi ý ngay ở đề bài.

Giải chi tiết:

\(\int\limits_0^{\ln 2} {\sqrt {{e^x} - 1} dx} \)

Đặt \(t = \sqrt {{e^x} - 1} \)\( \Rightarrow {t^2} = {e^x} - 1 \Rightarrow 2tdt = {e^x}dx\) \( \Rightarrow dx = \dfrac{{2tdt}}{{{e^x}}} = \dfrac{{2tdt}}{{{t^2} + 1}}\)

Đổi cận: \(x = 0 \Rightarrow t = 0\), \(x = \ln 2 \Rightarrow t = 1\).

Khi đó \(\int\limits_0^{\ln 2} {\sqrt {{e^x} - 1} dx} \)\( = \int\limits_0^1 {t.\dfrac{{2t}}{{{t^2} + 1}}dt} \) \( = \int\limits_0^1 {\left( {2 - \dfrac{2}{{{t^2} + 1}}} \right)dt} \) \( = 2 - 2\int\limits_0^1 {\dfrac{{dt}}{{{t^2} + 1}}} \)

Xét \(I = \int\limits_0^1 {\dfrac{{dt}}{{{t^2} + 1}}} \). Đặt \(t = \tan u \Rightarrow dt = \left( {1 + {{\tan }^2}u} \right)du\).

Đổi cận \(t = 0 \Rightarrow u = 0\), \(t = 1 \Rightarrow u = \dfrac{\pi }{4}\).

Khi đó \(I = \int\limits_0^1 {\dfrac{{dt}}{{{t^2} + 1}}} \)\( = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{1 + {{\tan }^2}u}}{{{{\tan }^2}u + 1}}du}  = \int\limits_0^{\dfrac{\pi }{4}} {du}  = \dfrac{\pi }{4}\)

Suy ra \(\int\limits_0^{\ln 2} {\sqrt {{e^x} - 1} dx} \)\( = 2 - 2.\dfrac{\pi }{4} = 2 - \dfrac{\pi }{2}\).


LG câu c

c) \(\int\limits_1^9 {x\sqrt[3]{{1 - x}}dx} \)  (đặt \(t = \sqrt[3]{{1 - x}}\))

Phương pháp giải:

Sử dụng phương pháp đổi biến tính tích phân, cách đổi biến đã được gợi ý ngay ở đề bài.

Giải chi tiết:

\(\int\limits_1^9 {x\sqrt[3]{{1 - x}}dx} \)

Đặt \(t = \sqrt[3]{{1 - x}}\) \( \Rightarrow {t^3} = 1 - x \Rightarrow 3{t^2}dt =  - dx\)

Đổi cận \(x = 1 \Rightarrow t = 0\), \(x = 9 \Rightarrow t =  - 2\)

Khi đó \(\int\limits_1^9 {x\sqrt[3]{{1 - x}}dx} \)\( = \int\limits_0^{ - 2} {\left( {1 - {t^3}} \right).t\left( { - 3{t^2}dt} \right)} \) \( = 3\int\limits_{ - 2}^0 {\left( {{t^3} - {t^6}} \right)dt} \) \( = 3\left. {\left( {\dfrac{{{t^4}}}{4} - \dfrac{{{t^7}}}{7}} \right)} \right|_{ - 2}^0\) \( =  - 3\left( {\dfrac{{16}}{4} + \dfrac{{{2^7}}}{7}} \right) =  - \dfrac{{468}}{7}\).


LG câu d

d) \(\int\limits_0^\pi  {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} \)    (đặt  \(x = \pi  - t\))

Phương pháp giải:

Sử dụng phương pháp đổi biến tính tích phân, cách đổi biến đã được gợi ý ngay ở đề bài.

Giải chi tiết:

\(\int\limits_0^\pi  {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} \)

Đặt \(x = \pi  - t\), ta suy ra:

\(\int\limits_0^\pi  {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} \)\( = \int\limits_\pi ^0 {\dfrac{{\left( {\pi  - t} \right)\sin \left( {\pi  - t} \right)}}{{1 + {{\cos }^2}\left( {\pi  - t} \right)}}\left( { - dt} \right)} \)\( = \int\limits_0^\pi  {\dfrac{{\left( {\pi  - t} \right)\sin t}}{{1 + {{\cos }^2}t}}dt} \) \( = \int\limits_0^\pi  {\dfrac{{\left( {\pi  - x} \right)\sin x}}{{1 + {{\cos }^2}x}}dx} \)

\( = \int\limits_0^\pi  {\dfrac{{\pi \sin x}}{{1 + {{\cos }^2}x}}dx}  - \int\limits_0^\pi  {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} \)

\( \Rightarrow 2\int\limits_0^\pi  {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx}  = \int\limits_0^\pi  {\dfrac{{\pi \sin x}}{{1 + {{\cos }^2}x}}dx} \) \( \Leftrightarrow \int\limits_0^\pi  {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx}  = \dfrac{\pi }{2}\int\limits_0^\pi  {\dfrac{{\sin x}}{{1 + {{\cos }^2}x}}dx} \)

Xét \(I = \int\limits_0^\pi  {\dfrac{{\sin x}}{{1 + {{\cos }^2}x}}dx} \), đặt \(u = \cos x \Rightarrow du =  - \sin xdx\).

Đổi cận \(x = 0 \Rightarrow u = 1,\) \(x = \pi  \Rightarrow u =  - 1\). Khi đó

\(I = \int\limits_0^\pi  {\dfrac{{\sin x}}{{1 + {{\cos }^2}x}}dx} \)\( = \int\limits_1^{ - 1} {\dfrac{{ - du}}{{1 + {u^2}}}}  = \int\limits_{ - 1}^1 {\dfrac{{du}}{{1 + {u^2}}}} \)

Đặt \(u = \tan t\) \( \Rightarrow du = \left( {1 + {{\tan }^2}t} \right)dt\). Đổi cận \(u =  - 1 \Rightarrow t =  - \dfrac{\pi }{4},\) \(u = 1 \Rightarrow t = \dfrac{\pi }{4}\).

Khi đó \(I = \int\limits_{ - 1}^1 {\dfrac{{du}}{{1 + {u^2}}}}  = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {dt}  = \dfrac{\pi }{2}\)

Vậy \(\int\limits_0^\pi  {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx}  = \dfrac{\pi }{2}.I = \dfrac{{{\pi ^2}}}{4}\).


LG câu e

e) \(\int\limits_{ - 1}^1 {{x^2}{{(1 - {x^3})}^4}dx} \)

Phương pháp giải:

Sử dụng phương pháp đổi biến tính tích phân, cách đổi biến đã được gợi ý ngay ở đề bài.

Giải chi tiết:

\(\int\limits_{ - 1}^1 {{x^2}{{(1 - {x^3})}^4}dx} \)

Đặt \(t = 1 - {x^3} \Rightarrow dt =  - 3{x^2}dx\) \( \Rightarrow {x^2}dx =  - \dfrac{{dt}}{3}\).

Đổi cận \(x =  - 1 \Rightarrow t = 2\), \(x = 1 \Rightarrow t = 0\). Khi đó

\(\int\limits_{ - 1}^1 {{x^2}{{(1 - {x^3})}^4}dx} \)\( = \int\limits_2^0 {{t^4}.\left( { - \dfrac{{dt}}{3}} \right)}  = \dfrac{1}{3}\int\limits_0^2 {{t^4}dt} \) \( = \dfrac{1}{3}\left. {\left( {\dfrac{{{t^5}}}{5}} \right)} \right|_0^2 = \dfrac{{32}}{{15}}\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"