Bài 3.41 trang 180 SBT giải tích 12

2024-09-14 19:35:26

Đề bài

Quay hình phẳng \(\displaystyle  Q\) giới hạn bởi các đường \(\displaystyle  {y_1} = \sin x\) và \(\displaystyle  {y_2} = \frac{{2x}}{\pi }\) quanh trục \(\displaystyle  Ox\), ta được một khối tròn xoay. Khi đó thể tích của khối tròn xoay này bằng

A. \(\displaystyle  \frac{1}{6}\)                    B. \(\displaystyle  \frac{\pi }{6}\)

C. \(\displaystyle  8\)                      D. \(\displaystyle  \frac{{{\pi ^2}}}{6}\)

Phương pháp giải - Xem chi tiết

- Giải phương trình hoành độ tìm nghiệm.

- Tính thể tích theo công thức \(\displaystyle  V = \pi \int\limits_a^b {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx} \).

Lời giải chi tiết

Ta có: \(\displaystyle  \sin x = \frac{{2x}}{\pi } \Rightarrow \left[ \begin{array}{l}x = 0\\x = \frac{\pi }{2}\\x =  - \frac{\pi }{2}\end{array} \right.\)

Khi đó \(\displaystyle  V = \pi \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left| {{{\sin }^2}x - {{\left( {\frac{{2x}}{\pi }} \right)}^2}} \right|dx} \)

Dễ thấy \(\displaystyle  f\left( x \right) = \left| {{{\sin }^2}x - {{\left( {\frac{{2x}}{\pi }} \right)}^2}} \right|\) là hàm số chẵn nên:

\(\displaystyle  V = 2\pi \int\limits_0^{\frac{\pi }{2}} {\left| {{{\sin }^2}x - {{\left( {\frac{{2x}}{\pi }} \right)}^2}} \right|dx} \)\(\displaystyle   = 2\pi \int\limits_0^{\frac{\pi }{2}} {\left( {{{\sin }^2}x - {{\left( {\frac{{2x}}{\pi }} \right)}^2}} \right)dx} \) \(\displaystyle   = 2\pi \int\limits_0^{\frac{\pi }{2}} {{{\sin }^2}xdx}  - \frac{8}{\pi }\int\limits_0^{\frac{\pi }{2}} {{x^2}dx} \)

\(\displaystyle   = \pi \int\limits_0^{\frac{\pi }{2}} {\left( {1 - \cos 2x} \right)dx}  - \frac{8}{\pi }\int\limits_0^{\frac{\pi }{2}} {{x^2}dx} \) \(\displaystyle   = \pi \left. {\left( {x - \frac{{\sin 2x}}{2}} \right)} \right|_0^{\frac{\pi }{2}} - \frac{8}{\pi }.\left. {\frac{{{x^3}}}{3}} \right|_0^{\frac{\pi }{2}}\) \(\displaystyle   = \pi \left( {\frac{\pi }{2} - 0} \right) - \frac{8}{\pi }.\frac{1}{3}.{\left( {\frac{\pi }{2}} \right)^3}\)

\(\displaystyle   = \frac{{{\pi ^2}}}{2} - \frac{{{\pi ^2}}}{3} = \frac{{{\pi ^2}}}{6}\)

Chọn D.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"