Bài 3.34 trang 178 SBT giải tích 12

2024-09-14 19:35:29

Đề bài

Tính thể tích khối tròn xoay tạo bởi phép quay quanh trục \(\displaystyle  Ox\) hình phẳng giới hạn bởi các đường \(\displaystyle  y = \frac{1}{x}\), \(\displaystyle  y = 0,x = 1\) và \(\displaystyle  x = a\left( {a > 1} \right)\). Gọi thể tích đó là \(\displaystyle  V\left( a \right)\). Xác định thể tích của vật thể khi \(\displaystyle  a \to  + \infty \) (tức là \(\displaystyle  \mathop {\lim }\limits_{a \to  + \infty } V(a)\)).

Phương pháp giải - Xem chi tiết

Sử dụng công thức \(\displaystyle  V = \pi \int\limits_a^b {{f^2}\left( x \right)dx} \).

Lời giải chi tiết

Ta có: \(\displaystyle  V(a) = \pi \int\limits_1^a {\frac{1}{{{x^2}}}dx}  = \pi \left. {\left( { - \frac{1}{x}} \right)} \right|_1^a\) \(\displaystyle   = \pi \left( {1 - \frac{1}{a}} \right)\)

\(\displaystyle   \Rightarrow \mathop {\lim }\limits_{a \to  + \infty } V\left( a \right) = \pi \).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"