Bài 3.32 trang 178 SBT giải tích 12

2024-09-14 19:35:31

Tính thể tích vật thể:

LG a

a) Có đáy là một tam giác cho bởi: \(\displaystyle  y = x,y = 0\), và \(\displaystyle  x = 1\). Mỗi thiết diện vuông góc với trục \(\displaystyle  Ox\) là một hình vuông.

Phương pháp giải:

Sử dụng công thức tính thể tích \(\displaystyle  V = \int\limits_a^b {S\left( x \right)dx} \)

Lời giải chi tiết:

Dựng hình:

Với \(\displaystyle  \forall x \in \left[ {0;1} \right]\), thiết diện là hình vuông cạnh \(\displaystyle  x\), diện tích thiết diện \(\displaystyle  S\left( x \right) = {x^2}\).

Vậy \(\displaystyle  V = \int\limits_0^1 {S(x)dx = \int\limits_0^1 {{x^2}dx  = \left. {\dfrac{{{x^3}}}{3}} \right|_0^1= \dfrac{1}{3}} } \)


LG b

b) Có đáy là một hình tròn giới hạn bởi \(\displaystyle  {x^2} + {y^2} = 1\). Mỗi thiết diện vuông góc với trục \(\displaystyle  Ox\) là một hình vuông.

Phương pháp giải:

Sử dụng công thức tính thể tích \(\displaystyle  V = \int\limits_a^b {S\left( x \right)dx} \)

Lời giải chi tiết:

Dựng hình:

Thiết diện vuông góc trục \(\displaystyle  Ox\) tại \(\displaystyle  x \in {\rm{[}} - 1;1]\) là hình vuông cạnh \(\displaystyle  AB\) , trong đó \(\displaystyle  A\left( {x;y} \right)\) với \(\displaystyle  y = \sqrt {1 - {x^2}} \).

Khi đó, \(\displaystyle  AB = 2\sqrt {1 - {x^2}} \). Diện tích thiết diện là: \(\displaystyle  S(x) = 4(1 - {x^2})\) .

Vậy \(V = \int\limits_{ - 1}^1 {4\left( {1 - {x^2}} \right)dx}  \) \(= 4\left. {\left( {x - \dfrac{{{x^3}}}{3}} \right)} \right|_{ - 1}^1 \) \(= 4\left( {\dfrac{2}{3} + \dfrac{2}{3}} \right) = \dfrac{{16}}{3}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"