Bài 3.54 trang 183 SBT giải tích 12

2024-09-14 19:35:33

Đề bài

Nhờ ý nghĩa hình học của tích phân, hãy tìm khẳng định sai trong các khẳng định sau:

A. \(\displaystyle  \int\limits_0^1 {\ln \left( {1 + x} \right)dx}  > \int\limits_0^1 {\frac{{x - 1}}{{e - 1}}dx} \)

B. \(\displaystyle  \int\limits_0^{\frac{\pi }{4}} {{{\sin }^2}xdx}  < \int\limits_0^{\frac{\pi }{4}} {\sin 2xdx} \)

C. \(\displaystyle  \int\limits_0^1 {{e^{ - x}}dx}  > \int\limits_0^1 {{{\left( {\frac{{1 - x}}{{1 + x}}} \right)}^2}dx} \)

D. \(\displaystyle  \int\limits_0^1 {{e^{ - {x^2}}}dx}  > \int\limits_0^1 {{e^{ - {x^3}}}dx} \)

Phương pháp giải - Xem chi tiết

Sử dụng ý nghĩa hình học của tích phân: Nếu \(\displaystyle  f\left( x \right) \ge 0,\forall x \in \left[ {a;b} \right]\) thì \(\displaystyle  S = \int\limits_a^b {f\left( x \right)dx}  > 0\).

Lời giải chi tiết

Đáp án A:

Xét \(\displaystyle  I = \int\limits_0^1 {\ln \left( {1 + x} \right)dx}  - \int\limits_0^1 {\frac{{x - 1}}{{e - 1}}dx} \) \(\displaystyle   = \int\limits_0^1 {\left( {\ln \left( {1 + x} \right) - \frac{{x - 1}}{{e - 1}}} \right)dx} \)

Dễ thấy trong \(\displaystyle  \left[ {0;1} \right]\) thì:

\(\displaystyle  \ln \left( {x + 1} \right) \ge 0 \ge \frac{{x - 1}}{{e - 1}}\)\(\displaystyle   \Rightarrow \ln \left( {x + 1} \right) - \frac{{x - 1}}{{e - 1}} \ge 0\)\(\displaystyle   \Rightarrow \int\limits_0^1 {\left( {\ln \left( {1 + x} \right) - \frac{{x - 1}}{{e - 1}}} \right)dx}  > 0\)

\(\displaystyle   \Rightarrow \int\limits_0^1 {\ln \left( {1 + x} \right)dx}  - \int\limits_0^1 {\frac{{x - 1}}{{e - 1}}dx}  > 0\) \(\displaystyle   \Leftrightarrow \int\limits_0^1 {\ln \left( {1 + x} \right)dx}  > \int\limits_0^1 {\frac{{x - 1}}{{e - 1}}dx} \) hay A đúng.

Đáp án B: Xét \(\displaystyle  \int\limits_0^{\frac{\pi }{4}} {{{\sin }^2}xdx}  - \int\limits_0^{\frac{\pi }{4}} {\sin 2xdx} \)\(\displaystyle   = \int\limits_0^{\frac{\pi }{4}} {\left( {{{\sin }^2}x - \sin 2x} \right)dx} \) \(\displaystyle   = \int\limits_0^{\frac{\pi }{4}} {\sin x\left( {\sin x - 2\cos x} \right)dx} \)

Trong đoạn \(\displaystyle  \left[ {0;\frac{\pi }{4}} \right]\) thì \(\displaystyle  0 \le \sin x \le \frac{{\sqrt 2 }}{2} \le \cos x \le 1\) \(\displaystyle   \Rightarrow \sin x - 2\cos x < 0\)

\(\displaystyle   \Rightarrow \sin x\left( {\sin x - 2\cos x} \right) \le 0\) \(\displaystyle   \Rightarrow \int\limits_0^{\frac{\pi }{4}} {\sin x\left( {\sin x - 2\cos x} \right)dx}  < 0\)\(\displaystyle   \Rightarrow \int\limits_0^{\frac{\pi }{4}} {{{\sin }^2}xdx}  < \int\limits_0^{\frac{\pi }{4}} {\sin 2xdx} \) hay B đúng.

Đáp án D: Xét \(\displaystyle  \int\limits_0^1 {{e^{ - {x^2}}}dx}  - \int\limits_0^1 {{e^{ - {x^3}}}dx} \)\(\displaystyle   = \int\limits_0^1 {\left( {{e^{ - {x^2}}} - {e^{ - {x^3}}}} \right)dx} \)

Trong đoạn \(\displaystyle  \left[ {0;1} \right]\) thì \(\displaystyle  {x^2} \ge {x^3} \Rightarrow  - {x^2} \le  - {x^3}\) \(\displaystyle   \Rightarrow {e^{ - {x^2}}} \le {e^{ - {x^3}}} \Rightarrow {e^{ - {x^2}}} - {e^{ - {x^3}}} \le 0\)

\(\displaystyle   \Rightarrow \int\limits_0^1 {\left( {{e^{ - {x^2}}} - {e^{ - {x^3}}}} \right)dx}  < 0\)\(\displaystyle   \Leftrightarrow \int\limits_0^1 {{e^{ - {x^2}}}dx}  < \int\limits_0^1 {{e^{ - {x^3}}}dx} \) hay D sai.

Chọn D.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"