Bài 3.45 trang 181 SBT giải tích 12

2024-09-14 19:35:36

Tính các tích phân sau:

LG a

\(\displaystyle  \int\limits_0^{\frac{\pi }{4}} {\cos 2x} .{\cos ^2}xdx\)

Phương pháp giải:

Sử dụng công thức hạ bậc kết hợp các công thức tính nguyên hàm các hàm số lượng giác.

Giải chi tiết:

Ta có: \(\displaystyle  {\cos ^2}x = \frac{{1 + \cos 2x}}{2}\) \(\displaystyle   \Rightarrow \cos 2x.{\cos ^2}x = \frac{1}{2}\cos 2x\left( {1 + \cos 2x} \right)\)

\(\displaystyle   = \frac{1}{2}\cos 2x + \frac{1}{2}{\cos ^2}2x\) \(\displaystyle   = \frac{1}{2}\cos 2x + \frac{1}{4}\left( {1 + \cos 4x} \right)\) \(\displaystyle   = \frac{1}{2}\cos 2x + \frac{1}{4}\cos 4x + \frac{1}{4}\)

Suy ra \(\displaystyle  \int\limits_0^{\frac{\pi }{4}} {\cos 2x} .{\cos ^2}xdx\)\(\displaystyle   = \int\limits_0^{\frac{\pi }{4}} {\left( {\frac{1}{2}\cos 2x + \frac{1}{4}\cos 4x + \frac{1}{4}} \right)dx} \) \(\displaystyle   = \left. {\left( {\frac{1}{4}\sin 2x + \frac{1}{{16}}\sin 4x + \frac{1}{4}x} \right)} \right|_0^{\frac{\pi }{4}}\) \(\displaystyle   = \frac{1}{4} + \frac{\pi }{{16}}\)


LG b

\(\displaystyle  \int\limits_{\frac{1}{2}}^1 {\frac{{{e^x}}}{{{e^{2x}} - 1}}dx} \)

Phương pháp giải:

Biến đổi biểu thức dưới dấu tích phân đưa về các hàm số dễ tính tích phân.

Giải chi tiết:

Ta có: \(\displaystyle  \frac{{{e^x}}}{{{e^{2x}} - 1}} = \frac{{{e^x}}}{{\left( {{e^x} - 1} \right)\left( {{e^x} + 1} \right)}}\) \(\displaystyle   = \frac{1}{2}\left( {\frac{{{e^x}}}{{{e^x} - 1}} - \frac{{{e^x}}}{{{e^x} + 1}}} \right)\)

Khi đó \(\displaystyle  \int\limits_{\frac{1}{2}}^1 {\frac{{{e^x}}}{{{e^{2x}} - 1}}dx} \) \(\displaystyle   = \frac{1}{2}\int\limits_{\frac{1}{2}}^1 {\left( {\frac{{{e^x}}}{{{e^x} - 1}} - \frac{{{e^x}}}{{{e^x} + 1}}} \right)dx} \) \(\displaystyle   = \frac{1}{2}\left[ {\int\limits_{\frac{1}{2}}^1 {\frac{{{e^x}}}{{{e^x} - 1}}dx}  - \int\limits_{\frac{1}{2}}^1 {\frac{{{e^x}}}{{{e^x} + 1}}} dx} \right]\)

\(\displaystyle   = \frac{1}{2}\left[ {\int\limits_{\frac{1}{2}}^1 {\frac{{d\left( {{e^x}} \right)}}{{{e^x} - 1}}}  - \int\limits_{\frac{1}{2}}^1 {\frac{{d\left( {{e^x}} \right)}}{{{e^x} + 1}}} } \right]\) \(\displaystyle   = \frac{1}{2}\left. {\left[ {\ln \left| {{e^x} - 1} \right| - \ln \left| {{e^x} + 1} \right|} \right]} \right|_{\frac{1}{2}}^1\) \(\displaystyle   = \frac{1}{2}\left. {\left[ {\ln \left| {\frac{{{e^x} - 1}}{{{e^x} + 1}}} \right|} \right]} \right|_{\frac{1}{2}}^1\)

\(\displaystyle   = \frac{1}{2}\left( {\ln \frac{{e - 1}}{{e + 1}} - \ln \frac{{\sqrt e  - 1}}{{\sqrt e  + 1}}} \right)\) \(\displaystyle   = \frac{1}{2}\ln \frac{{\left( {e - 1} \right)\left( {\sqrt e  + 1} \right)}}{{\left( {e + 1} \right)\left( {\sqrt e  - 1} \right)}}\).


LG c

\(\displaystyle  \int\limits_0^1 {\frac{{x + 2}}{{{x^2} + 2x + 1}}\ln (x + 1)dx} \)

Phương pháp giải:

Tách tích phân đã cho thành các tích phân nhỏ dễ tính hơn.

Giải chi tiết:

Ta có: \(\displaystyle  \frac{{x + 2}}{{{{\left( {x + 1} \right)}^2}}} = \frac{{x + 1}}{{{{\left( {x + 1} \right)}^2}}} + \frac{1}{{{{\left( {x + 1} \right)}^2}}}\) \(\displaystyle   = \frac{1}{{x + 1}} + \frac{1}{{{{\left( {x + 1} \right)}^2}}}\)

Khi đó \(\displaystyle  \int\limits_0^1 {\frac{{x + 2}}{{{x^2} + 2x + 1}}\ln (x + 1)dx} \)\(\displaystyle   = \int\limits_0^1 {\frac{{\ln \left( {x + 1} \right)}}{{x + 1}}dx}  + \int\limits_0^1 {\frac{{\ln \left( {x + 1} \right)}}{{{{\left( {x + 1} \right)}^2}}}dx} \) \(\displaystyle   = I + J\)

\(\displaystyle  I = \int\limits_0^1 {\ln \left( {x + 1} \right)d\left( {\ln \left( {x + 1} \right)} \right)} \) \(\displaystyle   = \left. {\frac{{{{\ln }^2}\left( {x + 1} \right)}}{2}} \right|_0^1 = \frac{{{{\ln }^2}2}}{2}\)

Tính \(\displaystyle  J = \int\limits_0^1 {\frac{{\ln \left( {x + 1} \right)}}{{{{\left( {x + 1} \right)}^2}}}dx} \).

Đặt \(\displaystyle  \left\{ \begin{array}{l}u = \ln \left( {x + 1} \right)\\dv = \frac{{dx}}{{{{\left( {x + 1} \right)}^2}}}\end{array} \right.\) \(\displaystyle   \Rightarrow \left\{ \begin{array}{l}du = \frac{1}{{x + 1}}dx\\v =  - \frac{1}{{x + 1}}\end{array} \right.\)

\(\displaystyle   \Rightarrow J =  - \left. {\frac{{\ln \left( {x + 1} \right)}}{{x + 1}}} \right|_0^1 + \int\limits_0^1 {\frac{1}{{{{\left( {x + 1} \right)}^2}}}dx} \) \(\displaystyle   =  - \frac{{\ln 2}}{2} - \left. {\frac{1}{{x + 1}}} \right|_0^1\) \(\displaystyle   =  - \frac{{\ln 2}}{2} - \frac{1}{2} + 1 = \frac{1}{2} - \frac{{\ln 2}}{2}\)

Vậy \(\displaystyle  \int\limits_0^1 {\frac{{x + 2}}{{{x^2} + 2x + 1}}\ln (x + 1)dx} \)\(\displaystyle   = \frac{{{{\ln }^2}2}}{2} + \frac{1}{2} - \frac{{\ln 2}}{2}\) \(\displaystyle   = \frac{{{{\ln }^2}2 - \ln 2 + 1}}{2}\)


LG d

\(\displaystyle  \int\limits_0^{\frac{\pi }{4}} {\frac{{x\sin x + (x + 1)\cos x}}{{x\sin x + \cos x}}dx} \)

Phương pháp giải:

Tách tích phân đã cho thành các tích phân nhỏ dễ tính hơn.

Giải chi tiết:

Ta có: \(\displaystyle  \frac{{x\sin x + (x + 1)\cos x}}{{x\sin x + \cos x}}\)\(\displaystyle   = \frac{{\left( {x\sin x + \cos x} \right) + x\cos x}}{{x\sin x + \cos x}}\) \(\displaystyle   = 1 + \frac{{x\cos x}}{{x\sin x + \cos x}}\)

Khi đó \(\displaystyle  \int\limits_0^{\frac{\pi }{4}} {\frac{{x\sin x + (x + 1)\cos x}}{{x\sin x + \cos x}}dx} \)\(\displaystyle   = \int\limits_0^{\frac{\pi }{4}} {\left( {1 + \frac{{x\cos x}}{{x\sin x + \cos x}}} \right)dx} \) \(\displaystyle   = \int\limits_0^{\frac{\pi }{4}} {dx}  + \int\limits_0^{\frac{\pi }{4}} {\frac{{x\cos x}}{{x\sin x + \cos x}}dx} \)

\(\displaystyle   = \frac{\pi }{4} + I\) với \(\displaystyle  I = \int\limits_0^{\frac{\pi }{4}} {\frac{{x\cos x}}{{x\sin x + \cos x}}dx} \)

Đặt \(\displaystyle  x\sin x + \cos x = u\) \(\displaystyle   \Rightarrow du = \left( {\sin x + x\cos x - \sin x} \right)dx\) \(\displaystyle   = x\cos xdx\)

\(\displaystyle   \Rightarrow I = \int\limits_1^{\frac{{\sqrt 2 }}{2}\left( {\frac{\pi }{4} + 1} \right)} {\frac{{du}}{u}} \) \(\displaystyle   = \left. {\ln \left| u \right|} \right|_1^{\frac{{\sqrt 2 }}{2}\left( {\frac{\pi }{4} + 1} \right)}\) \(\displaystyle   = \ln \left[ {\frac{{\sqrt 2 }}{2}\left( {\frac{\pi }{4} + 1} \right)} \right]\) \(\displaystyle   = \ln \frac{{\sqrt 2 }}{2} + \ln \left( {\frac{\pi }{4} + 1} \right)\) \(\displaystyle   = \ln \left( {1 + \frac{\pi }{4}} \right) - \frac{1}{2}\ln 2\)

Vậy \(\displaystyle  \int\limits_0^{\frac{\pi }{4}} {\frac{{x\sin x + (x + 1)\cos x}}{{x\sin x + \cos x}}dx} \)\(\displaystyle   = \frac{\pi }{4} + \ln \left( {1 + \frac{\pi }{4}} \right) - \frac{1}{2}\ln 2\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"