Bài 4.18 trang 202 SBT giải tích 12

2024-09-14 19:35:41

Đề bài

Cho \({z_1},{z_2} \in \mathbb{C}\). Khẳng định nào sau đây sai?

A. \({z_1}\overline {{z_2}}  + \overline {{z_1}} {z_2} \in \mathbb{R}\)

B. \({z_1}{z_2} + \overline {{z_1}} \overline {{z_2}}  \in \mathbb{R}\)

C. \({z_1}\overline {{z_2}} \overline {{z_1}} {z_2} \in \mathbb{R}\)

D. \({z_1}{z_2} - \overline {{z_1}} \overline {{z_2}}  \in \mathbb{R}\)

Phương pháp giải - Xem chi tiết

Sử dụng chú ý: \(z \in \mathbb{R} \Leftrightarrow z = \overline z \), nghĩa là tìm số phức liên hợp của mỗi số phức ở các đáp án và kiểm tra có bằng số phức ban đầu hay không.

Chú ý:

+) \(\overline {{z_1} + {z_2}}  = \overline {{z_1}}  + \overline {{z_2}} \)

+) \(\overline {{z_1}{z_2}}  = \overline {{z_1}} .\overline {{z_2}} \)

Lời giải chi tiết

Đáp án A:

Đặt \(z = {z_1}\overline {{z_2}}  + \overline {{z_1}} {z_2}\) ta có: \(\overline z  = \overline {{z_1}\overline {{z_2}}  + \overline {{z_1}} {z_2}}  = \overline {{z_1}\overline {{z_2}} }  + \overline {\overline {{z_1}} {z_2}} \)\( = \overline {{z_1}} .\overline {\overline {{z_2}} }  + \overline {\overline {{z_1}} } .\overline {{z_2}}  = \overline {{z_1}} {z_2} + {z_1}\overline {{z_2}}  = z\).

Do đó \({z_1}\overline {{z_2}}  + \overline {{z_1}} {z_2} \in \mathbb{R}\).

Đáp án B:

Đặt \(z = {z_1}{z_2} + \overline {{z_1}} \overline {{z_2}} \) ta có: \(\overline z  = \overline {{z_1}{z_2} + \overline {{z_1}} \overline {{z_2}} }  = \overline {{z_1}{z_2}}  + \overline {\overline {{z_1}} \overline {{z_2}} } \) \( = \overline {{z_1}} .\overline {{z_2}}  + {z_1}{z_2} = z\) nên \(z \in \mathbb{R}\).

Đáp án C:

Đặt \(z = {z_1}\overline {{z_2}} \overline {{z_1}} {z_2}\) ta có: \(\overline z  = \overline {{z_1}\overline {{z_2}} \overline {{z_1}} {z_2}}  = \overline {{z_1}} \overline {\overline {{z_2}} } \overline {\overline {{z_1}} } .\overline {{z_2}} \) \( = \overline {{z_1}} .{z_2}.{z_1}.\overline {{z_2}}  = z\) nên \(z \in \mathbb{R}\).

Đáp án D:

Đặt \(z = {z_1}{z_2} - \overline {{z_1}} \overline {{z_2}} \) ta có: \(\overline z  = \overline {{z_1}{z_2} - \overline {{z_1}} \overline {{z_2}} } \) \( = \overline {{z_1}{z_2}}  - \overline {\overline {{z_1}} .\overline {{z_2}} }  = \overline {{z_1}} .\overline {{z_2}}  - {z_1}{z_2} \ne z\) nên \(z \notin \mathbb{R}\).

Chọn D.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"