Bài 4.24 trang 204 SBT giải tích 12

2024-09-14 19:35:44

Đề bài

Cho \(z \in \mathbb{C}\). Mệnh đề nào sau đây sai?

A. \(\dfrac{1}{z} \in \mathbb{R} \Leftrightarrow z \in \mathbb{R}\)

B. \(\dfrac{1}{z}\) là thuần ảo \( \Leftrightarrow z\) là thuần ảo

C. \(\dfrac{1}{z} = \overline z  \Leftrightarrow \left| z \right| = 1\)

D. \(\left| {\dfrac{1}{z}} \right| = \left| z \right| \Leftrightarrow z \in \mathbb{R}\)

Phương pháp giải - Xem chi tiết

Đặt \(z = a + bi\) và kiểm tra tính đúng sai của từng đáp án.

Lời giải chi tiết

Đáp án A: \(\dfrac{1}{z} = \dfrac{1}{{a + bi}} = \dfrac{{a - bi}}{{{a^2} + {b^2}}}\)

Do đó \(\dfrac{1}{z} \in \mathbb{R}\) \( \Leftrightarrow  - \dfrac{b}{{{a^2} + {b^2}}} = 0 \Leftrightarrow b = 0\) hay \(z = a \in \mathbb{R}\).

A đúng.

Đáp án B: \(\dfrac{1}{z}\) thuần ảo \( \Leftrightarrow \dfrac{a}{{{a^2} + {b^2}}} = 0 \Leftrightarrow a = 0\) hay \(z = bi\) thuần ảo.

B đúng.

Đáp án C: \(\dfrac{1}{z} = \overline z  \Leftrightarrow \dfrac{{a - bi}}{{{a^2} + {b^2}}} = a - bi\) \( \Leftrightarrow {a^2} + {b^2} = 1 \Leftrightarrow \left| z \right| = 1\)

C đúng.

Đáp án D: \(\left| {\dfrac{1}{z}} \right| = \left| z \right| \Leftrightarrow {\left| {\dfrac{1}{z}} \right|^2} = {\left| z \right|^2}\)\( \Leftrightarrow \dfrac{{{a^2}}}{{{{\left( {{a^2} + {b^2}} \right)}^2}}} + \dfrac{{{b^2}}}{{{{\left( {{a^2} + {b^2}} \right)}^2}}} = {a^2} + {b^2}\) \( \Leftrightarrow \dfrac{1}{{{a^2} + {b^2}}} = {a^2} + {b^2}\) \( \Leftrightarrow {a^2} + {b^2} = 1\) hay \(\left| z \right| = 1\) chứ chưa kết luận được \(z \in \mathbb{R}\).

D sai.

Chọn D.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"