Bài 4.29 trang 206 SBT giải tích 12

2024-09-14 19:35:46

Đề bài

Chứng minh rằng hai số phức liên hợp \(z\) và \(\overline z \) là hai nghiệm của một phương trình bậc hai với hệ số thực.

Phương pháp giải - Xem chi tiết

Tính \(z + \overline z \) và \(z.\overline z \) rồi suy ra phương trình bậc hai nhận \(z\) và \(\overline z \) làm nghiệm.

Lời giải chi tiết

Nếu \(z = a + bi\) thì \(\overline z  = a - bi\)

\(z + \overline z  =a+bi+a-bi= 2a \in \mathbb{R};\)

\(z.\overline z   = \left( {a + bi} \right)\left( {a - bi} \right) \) \(= {a^2} - {\left( {bi} \right)^2}= {a^2} + {b^2} \in \mathbb{R}\)

Khi đó \(z\) và \(\overline z \) là hai nghiệm của phương trình \(\left( {x - z} \right)\left( {x - \overline z } \right) = 0\)\( \Leftrightarrow {x^2} - \left( {z + \overline z } \right)x + z.\bar z = 0\)\( \Leftrightarrow {x^2} - 2ax + {a^2} + {b^2} = 0\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"