Bài 4.44 trang 208 SBT giải tích 12

2024-09-14 19:35:48

Đề bài

Tìm số phức z thỏa mãn: \(|z - (2 + i)| = \sqrt {10} \)  và \(z.\overline z  = 25\)

(Đề thi đại học năm 2009, khối B)

Phương pháp giải - Xem chi tiết

Đặt \(z = x + yi\), tìm mối quan hệ của \(x,y\) và suy ra tập hợp điểm biểu diễn.

Lời giải chi tiết

Đặt \(z = x  + yi\).

Ta có: \(|z - (2 + i)| = \sqrt {10} \)\( \Leftrightarrow \left| {\left( {x - 2} \right) + \left( {y - 1} \right)i} \right| = \sqrt {10} \) \( \Leftrightarrow {\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = 10\)

Lại có \(z.\overline z  = 25\)\( \Leftrightarrow \left( {x + yi} \right)\left( {x - yi} \right) = 25\) \( \Leftrightarrow {x^2} + {y^2} = 25\).

Do đó \(\left\{ \begin{array}{l}{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = 10\\{x^2} + {y^2} = 25\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} - 4x - 2y + 5 = 10\\{x^2} + {y^2} = 25\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} = 25\\2x + y = 10\end{array} \right.\)

Ta có: \(2x + y = 10 \Leftrightarrow y = 10 - 2x\) thay vào phương trình trên ta được:

\({x^2} + {\left( {10 - 2x} \right)^2} = 25\) \( \Leftrightarrow 5{x^2} - 40x + 75 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 5 \Rightarrow y = 0\\x = 3 \Rightarrow y = 4\end{array} \right.\)

Đáp số: \(z = 5\) và \(z = 3 + 4i\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"