Bài 4.39 trang 208 SBT giải tích 12

2024-09-14 19:35:49

Đề bài

Tìm số phức \(z\) thỏa mãn hệ phương trình: \(\left\{ \begin{array}{l}\left| {z - 2i} \right| = \left| z \right|\\\left| {z - i} \right| = \left| {z - 1} \right|\end{array} \right.\)

Phương pháp giải - Xem chi tiết

Đặt \(z = x + yi\) thay vào điều kiện đề bài tìm \(x,y\) và kết luận. 

Lời giải chi tiết

Đặt \(z = x + yi \), ta được hệ phương trình:

\(\left\{ \begin{array}{l}\left| {x + yi - 2i} \right| = \left| {x + yi} \right|\\\left| {x + yi - i} \right| = \left| {x + yi - 1} \right|\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\left| {x + \left( {y - 2} \right)i} \right| = \left| {x + yi} \right|\\\left| {x + \left( {y - 1} \right)i} \right| = \left| {x - 1 + yi} \right|\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}\sqrt {{x^2} + {{\left( {y - 2} \right)}^2}}  = \sqrt {{x^2} + {y^2}} \\\sqrt {{x^2} + {{\left( {y - 1} \right)}^2}}  = \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} \end{array} \right.\)

\(\Leftrightarrow  \left\{ \begin{array}{l}{x^2} + {(y - 2)^2} = {x^2} + {y^2}\\{x^2} + {(y - 1)^2} = {(x - 1)^2} + {y^2}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}
{x^2} + {y^2} - 4y + 4 = {x^2} + {y^2}\\
{x^2} + {y^2} - 2y + 1 = {x^2} - 2x + 1 + {y^2}
\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l} - 4y + 4 = 0\\ - 2y + 1 =  - 2x + 1\end{array} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{y = 1}\\{x = y}\end{array}} \right. \Rightarrow x = 1,y = 1\)

Vậy \(z = 1 + i\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"