Bài 4.37 trang 208 SBT giải tích 12

2024-09-14 19:35:49

Giải các phương trình sau trên tập số phức:

LG a

\(3{x^2} + (3 + 2i\sqrt 2 )x - \dfrac{{{{(1 + i)}^3}}}{{1 - i}} = i\sqrt 8 x\)

Phương pháp giải:

Biến đổi, thu gọn vế trái các phương trình đưa về phương trình bậc hai với hệ số thực.

Sử dụng phương pháp giải phương trình bậc hai để giải phương trình kết luận nghiệm.

Giải chi tiết:

\(3{x^2} + (3 + 2i\sqrt 2 )x - \dfrac{{{{(1 + i)}^3}}}{{1 - i}} = i\sqrt 8 x\)

\( \Leftrightarrow 3{x^2} + 3x + 2i\sqrt 2 x - \dfrac{{{{\left( {1 + i} \right)}^4}}}{2} = 2i\sqrt 2 x\)

\( \Leftrightarrow 3{x^2} + 3x - \dfrac{{{{\left( {2i} \right)}^2}}}{2} = 0\)

\( \Leftrightarrow 3{x^2} + 3x + 2 = 0\)\( \Leftrightarrow {x_{1,2}} = \dfrac{{ - 3 \pm i\sqrt {15} }}{6}\)


LG b

\({(1 - ix)^2} + (3 + 2i)x - 5 = 0\)

Phương pháp giải:

Biến đổi, thu gọn vế trái các phương trình đưa về phương trình bậc hai với hệ số thực.

Sử dụng phương pháp giải phương trình bậc hai để giải phương trình kết luận nghiệm.

Giải chi tiết:

\({(1 - ix)^2} + (3 + 2i)x - 5 = 0\)\( \Leftrightarrow 1 - 2ix - {x^2} + 3x + 2ix - 5 = 0\)

\( \Leftrightarrow  - {x^2} + 3x - 4 = 0\) \( \Leftrightarrow {x_{1,2}} = \dfrac{{3 \pm i\sqrt 7 }}{2}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"