Bài 4 trang 216 SBT giải tích 12

2024-09-14 19:35:55

Tìm các đường tiệm cận của đồ thị các hàm số sau:

LG a

\(y = {{5x + 3} \over { - x + 2}}\)

Lời giải chi tiết:

Tiệm cận đứng: x = 2; Tiệm cận ngang: y = -5


LG b

\(y = {{ - 6x + 2} \over {x - 1}}\) 

Lời giải chi tiết:

Tiệm cận đứng: x = 1 ; Tiệm cận ngang: y = -6


LG c

\(y = {{2{x^2} + 8x - 9} \over {3{x^2} + x - 4}}\)

Lời giải chi tiết:

Ta có:  \(\displaystyle \mathop {\lim }\limits_{x \to  \pm \infty } {{2{x^2} + 8x - 9} \over {3{x^2} + x - 4}}\) \(\displaystyle = \mathop {\lim }\limits_{x \to  \pm \infty } {{{x^2}(2 + {8 \over x} - {9 \over {{x^2}}})} \over {{x^2}(3 + {1 \over x} - {4 \over {{x^2}}})}} \) \(\displaystyle = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{2 + \frac{8}{x} - \frac{9}{{{x^2}}}}}{{3 + \frac{1}{x} - \frac{4}{{{x^2}}}}} = \frac{2}{3}\)

Vậy đồ thị có đường tiệm cận ngang \(\displaystyle y = {2 \over 3}\)

Ta có  \(\displaystyle y = {{2{x^2} + 8x + 9} \over {(x - 1)(3x + 4)}}\)

Từ đó đồ thị có hai tiệm cận đứng là x = 1 và  \(\displaystyle x =  - {4 \over 3}\)


LG d

\(y = {{x + 2} \over { - 2x + 5}}\)

Lời giải chi tiết:

Tiệm cận đứng:  \(x = {5 \over 2}\) . Tiệm cận ngang:  \(y =  - {1 \over 2}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"