Bài 10 trang 217 SBT giải tích 12

2024-09-14 19:36:00

Cho hàm số \(\displaystyle y = {{(2 + m)x + m - 1} \over {x + 1}}\)(1)

LG a

Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m = 2.

Lời giải chi tiết:

Với m = 2, ta có  \(y = {{4x + 1} \over {x + 1}}\)

Đồ thị:


LG b

Xác định các điểm có tọa độ nguyên trên đồ thị của (1) khi \(m \in Z\).

Lời giải chi tiết:

Ta có  \(y = 2 + m - {3 \over {x + 1}}\)

Vậy để y nguyên với x và m nguyên thì x + 1 phải là ước của 3, tức là:  \(x + 1 =  \pm 1\)  hoặc \(x + 1 =  \pm 3\) hay \({x_1} = 0;{x_2} =  - 2;{x_3} =  - 4;{x_4} = 2\) .

Vậy các điểm thuộc đồ thị của (1) có tọa độ nguyên là A(0; m  -1) ; B(-2; 5 + m); C(-4; 3 + m); D(2; m  + 1).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"