Bài 17 trang 218 SBT giải tích 12

2024-09-14 19:36:02

Tính các tích phân sau:

LG a

\(\int\limits_{ - 2}^4 {{{({{x - 2} \over {x + 3}})}^2}dx} \) (đặt t  = x  +3)    

Lời giải chi tiết:

Đổi biến \( t = x + 3  \Rightarrow  x – 2 = t – 5\) . Khi x = - 2 thì t = 1, khi x = 4 thì t = 7, ta có:

\(\int\limits_{ - 2}^4 {{{({{x - 2} \over {x + 3}})}^2}dx = \int\limits_1^7 {(1 - {{10} \over t} + {{25} \over {{t^2}}}} } )dt\)

\(= (t - 10\ln t - {{25} \over t})\left| {\matrix{7 \cr 1 \cr} } \right. = 27{3 \over 7} - 10\ln 7\)


LG b

\(\int\limits_{ - 4}^6 {(|x + 3| - |x - 4|)dx} \)

Lời giải chi tiết:

\(\int\limits_{ - 4}^6 {(|x + 3| - |x - 4|)dx}\)

\( =  - 7\int\limits_{ - 4}^{ - 3} {dx}  + \int\limits_{ - 3}^4 {(2x - 1)dx}  + \int\limits_4^6 {7dx}  = 7\)


LG c

\(\int\limits_{ - 3}^2 {{{dx} \over {\sqrt {x + 7}  + 3}}} \)    (đặt \(t = \sqrt {x + 7} \)  hoặc \(t = \sqrt {x + 7}  + 3\) )

Lời giải chi tiết:

Đổi biến \(t = \sqrt {x + 7} \)  , ta có \(I = \int\limits_2^3 {{{2tdt} \over {t + 3}}}  = 2 - 6\ln 1,2\)

Nếu đổi biến \(t = \sqrt {x + 7}  + 3\)  thì ta có \(I = \int\limits_5^6 {(2 - {6 \over t})dt} \)


LG d

\(\int\limits_0^3 {(x + 2){e^{2x}}dx} \)

Lời giải chi tiết:

Đặt   \(u = x + 2,dv = {e^{2x}}dx \Rightarrow du = dx,v = {1 \over 2}{e^{2x}}\)

Ta có  \(I = {1 \over 2}(x + 2){e^{2x}}\left| {\matrix{3 \cr 0 \cr} } \right. - {1 \over 2}\int\limits_0^3 {{e^{2x}}} dx\)

\(= {1 \over 2}(5{e^6} - 2) - {1 \over 4}({e^6} - 1) = {3 \over 4}(3{e^6} - 1)\)


LG e

\(\int\limits_2^5 {{{\sqrt {4 + x} } \over x}dx} \) (đặt \(t = \sqrt {4 + x} \) )

Lời giải chi tiết:

Đổi biến  \(t = \sqrt {4 + x} \)

\(I = 2\int\limits_{\sqrt 6 }^3 {(1 + {1 \over {t - 2}} - {1 \over {t + 2}})dt}\)

\(= 2(t + \ln {{t - 2} \over {t + 2}})\left| {\matrix{3 \cr {\sqrt 6 } \cr} } \right. \)

\(= 2[3 - \sqrt 6 - \ln (25 - 10\sqrt 6 ){\rm{]}}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"