Bài 1.29 trang 20 SBT hình học 12

2024-09-14 19:36:30

Đề bài

Chứng minh rằng mỗi đỉnh của một hình đa diện là đỉnh chung của ít nhất ba cạnh.

Phương pháp giải - Xem chi tiết

Sử dụng định nghĩa hình đa diện:

Hình \(\left( H \right)\) gồm các hữu hạn các đa giác thỏa mãn hai điều kiện:

+ Hai đa giác bất kì hoặc không có điểm chung, hoặc có một đỉnh chung, hoặc có một cạnh chung.

+ Mỗi cạnh của một đa giác là cạnh chung của đúng hai đa giác.

Lời giải chi tiết

Gọi \({M_1}\) là một mặt của hình đa diện\(\left( H \right)\) chứa ba đỉnh \(A,B,C\).

Khi đó \(AB,BC\) là hai cạnh của \(\left( H \right)\).

Gọi \({M_2}\) là mặt khác với \({M_1}\) và có chung cạnh \(AB\) với \({M_1}\).

Khi đó \({M_2}\) còn có ít nhất một đỉnh \(D\) khác với \(A\) và \(B\).

Nếu \(D \equiv C\) thì \({M_1}\) và \({M_2}\) có hai cạnh chung \(AB\) và \(BC\) (vô lý).

Vậy \(D\) phải khác \(C\). Do đó qua đỉnh \(B\) có ít nhất ba cạnh là \(BA,BC,BD\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"