Bài 1.59 trang 24 SBT hình học 12

2024-09-14 19:36:31

Đề bài

Cho khối lập phương \(ABCD.A'B'C'D'\) cạnh bằng \(a\). Gọi \(M,N\) lần lượt là trung điểm của các cạnh \(AB,AD\). Mặt phẳng \(\left( {MB'D'N} \right)\) chia khối lập phương đã cho thành hai khối đa diện. Gọi \(\left( H \right)\) là khối đa diện chứa đỉnh \(A\). Thể tích của khối đa diện \(\left( H \right)\) bằng:

A. \(\dfrac{{{a^3}}}{9}\)                B. \(\dfrac{{{a^3}}}{6}\)

C. \(\dfrac{{{a^3}}}{4}\)                D. \(\dfrac{{7{a^3}}}{{24}}\)

Phương pháp giải - Xem chi tiết

- Kéo dài \(B'M,D'N\) cắt \(A'A\) tại \(S\).

- Tính thể tích khối chóp \(S.A'B'D'\) và \(S.AMN\) rồi suy ra đáp số.

Lời giải chi tiết

Kéo dài \(B'M,D'N\) cắt nhau tại \(S\).

Ta có: \(\left\{ \begin{array}{l}\left( {B'MND'} \right) \cap \left( {ABB'A'} \right) = B'M\\\left( {B'MND'} \right) \cap \left( {ADD'A'} \right) = D'N\\\left( {ABB'A'} \right) \cap \left( {ADD'A'} \right) = A'A\\B'M \cap D'N = \left\{ S \right\}\end{array} \right.\) \( \Rightarrow S \in A'A\).

Lại có \(\dfrac{{SA}}{{SA'}} = \dfrac{{SN}}{{SD'}} = \dfrac{{AN}}{{A'D'}} = \dfrac{1}{2}\)\( \Rightarrow SA = \dfrac{1}{2}SA'\) hay \(A\) là trung điểm của \(SA'\) hay \(SA = A'A = a\).

Ta có: \({V_{S.AMN}} = \dfrac{1}{3}SA.{S_{AMN}}\) \( = \dfrac{1}{3}a.\dfrac{1}{2}.\dfrac{a}{2}.\dfrac{a}{2} = \dfrac{{{a^3}}}{{24}}\).

\({V_{S.A'B'D'}} = \dfrac{1}{3}SA'.{S_{A'B'D'}}\) \( = \dfrac{1}{3}2a.\dfrac{1}{2}a.a = \dfrac{{{a^3}}}{3}\).

Vậy \({V_{AMN.A'B'D'}} = {V_{S.A'B'D'}} - {V_{S.AMN}}\) \( = \dfrac{{{a^3}}}{3} - \dfrac{{{a^3}}}{{24}} = \dfrac{{7{a^3}}}{{24}}\).

Chọn D.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"