Bài 1.46 trang 22 SBT hình học 12

2024-09-14 19:36:39

Đề bài

Cho \(\left( H \right)\) là khối chóp tứ giác đều có tất cả các cạnh bằng \(a\). Thể tích của \(\left( H \right)\) là:

A. \(\dfrac{{{a^3}}}{3}\)               B. \(\dfrac{{{a^3}\sqrt 2 }}{6}\)

C. \(\dfrac{{{a^3}\sqrt 3 }}{4}\)          D. \(\dfrac{{{a^3}\sqrt 3 }}{2}\)

Phương pháp giải - Xem chi tiết

- Tính diện tích đáy và chiều cao khối chóp.

- Tính thể tích theo công thức \(V = \dfrac{1}{3}Sh\).

Lời giải chi tiết

Gọi \(O = AC \cap BD\)

Vì chóp \(S.ABCD\) đều nên \(SO \bot \left( {ABCD} \right)\)

Ta có: \(AC = BD = a\sqrt 2 \)\( \Rightarrow OA = \dfrac{1}{2}AC = \dfrac{{a\sqrt 2 }}{2}\)

\(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OA\) \( \Rightarrow \Delta SOA\) vuông tại \(O\) \( \Rightarrow SO = \sqrt {S{A^2} - O{A^2}} \) \( = \sqrt {{a^2} - \dfrac{{{a^2}}}{2}}  = \dfrac{{a\sqrt 2 }}{2}\)

Vậy \({V_{S.ABCD}} = \dfrac{1}{3}SO.{S_{ABCD}}\)\( = \dfrac{1}{3}\dfrac{{a\sqrt 2 }}{2}{a^2} = \dfrac{{{a^3}\sqrt 2 }}{6}\)

Chọn B.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"