Bài 2.4 trang 47 SBT hình học 12

2024-09-14 19:36:48

Đề bài

Cho hình chóp tứ giác đều \(S.ABCD\) có chiều cao \( SO = h\) và góc \(\widehat {SAB} = \alpha (\alpha  > {45^0})\). Tính diện tích xung quanh của hình nón đỉnh \(S\) và có đường tròn đáy ngoại tiếp hình vuông \(ABCD\) của hình chóp.

Phương pháp giải - Xem chi tiết

Sử dụng công thức \({S_{xq}} = \pi rl\).

Lời giải chi tiết

Gọi \(r\) là bán kính đáy của hình nón ta có \(OA = r, SO = h\) và \(SA = SB = SC = SD =l\) là đường sinh của hình nón.

Gọi \(I\) là trung điểm của đoạn \(AB\), ta có:

\(\left\{ \begin{array}{l}S{A^2} = S{O^2} + O{A^2}\\AI = SA.\cos \alpha \end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{l^2} = {h^2} + {r^2}(1)\\\dfrac{{r\sqrt 2 }}{2} = l\cos \alpha (2)\end{array} \right.\)

\((2) \Rightarrow r = \sqrt 2 l\cos \alpha \)

\((1) \Rightarrow {l^2} = {h^2} + 2{l^2}{\cos ^2}\alpha \)\( \Rightarrow {h^2} = {l^2}(1 - 2{\cos ^2}\alpha )\) \( \Rightarrow {l^2} = \dfrac{{{h^2}}}{{1 - 2{{\cos }^2}\alpha }}\) \( \Rightarrow l = \dfrac{h}{{\sqrt {1 - 2{{\cos }^2}\alpha } }}\)

Do đó \(r = \sqrt 2 l\cos \alpha  = \dfrac{{\sqrt 2 h\cos \alpha }}{{\sqrt {1 - 2{{\cos }^2}\alpha } }}\)

\({S_{xq}} = \pi rl\)\( = \pi .\dfrac{{\sqrt 2 h\cos \alpha }}{{\sqrt {1 - 2{{\cos }^2}\alpha } }}.\dfrac{h}{{\sqrt {1 - 2{{\cos }^2}\alpha } }}\) \( = \dfrac{{\pi \sqrt 2 {h^2}\cos \alpha }}{{1 - 2{{\cos }^2}\alpha }}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"