Bài 2.42 trang 65 SBT hình học 12

2024-09-14 19:37:12

Đề bài

Cho mặt cầu \(S\left( {O;R} \right)\) và mặt phẳng \(\left( \alpha  \right)\). Gọi \(d\) là khoảng cách từ \(O\) tới \(\left( \alpha  \right)\). Khi \(d < R\) thì mặt phẳng \(\left( \alpha  \right)\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là đường tròn có bán kính bằng:

A. \(\sqrt {{R^2} + {d^2}} \)             B. \(\sqrt {{R^2} - {d^2}} \)

C. \(\sqrt {Rd} \)                      D. \(\sqrt {{R^2} - 2{d^2}} \)

Phương pháp giải - Xem chi tiết

Sử dụng định lý Pi – ta – go tính bán kính.

Lời giải chi tiết

Gọi H là hình chiếu của O lên mp\(\left( \alpha  \right)\) và A là điểm thuộc đường giao tuyến của (α) và mặt cầu S(O;R).

Tam giác \(OHA\) vuông tại \(H\) nên \(r = HA = \sqrt {O{A^2} - O{H^2}} \) \( = \sqrt {{R^2} - {d^2}} \).

Chọn B.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"