Bài 2.39 trang 65 SBT hình học 12

2024-09-14 19:37:13

Đề bài

Cho tứ diện đều \(ABCD\). Khi quay tứ diện đó xung quanh trục là \(AB\) có bao nhiêu hình nón khác nhau được tạo thành?

A. Một                B. Hai

C. Ba                 D. Không có hình nón nào.

Phương pháp giải - Xem chi tiết

Khi quay tam giác vuông quanh một cạnh góc vuông ta được một hình nón.

Lời giải chi tiết

Gọi \(I\) là trung điểm của \(AB\).

Dễ thấy \(DI,CI\) vuông góc \(AB\) và \(DI = CI\).

Tam giác \(AID\) vuông tại \(I\) nên khi quay quanh \(AI\) ta được hình nón đỉnh \(A\), bán kính đáy \(IC\) và chiều cao \(AI\).

Tam giác \(BIC\) vuông tại \(I\) nên khi quay quanh \(BI\) ta được hình nón đỉnh \(B\), bán kính đáy \(IC\) và chiều cao \(BI\).

Rõ ràng \(IC = ID\) nên khi quay quanh \(AB\) thì các tam giác \(AID\) và \(BID\) cũng tạo thành hai hình nón như trên.

Vậy có hai hình nón.

Chọn B.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"